Heavy element abundances predicted by radiative support theory in the atmospheres of hot white dwarfs

Author(s):  
P. Chayer ◽  
G. Fontaine ◽  
F. Wesemael
1996 ◽  
Vol 152 ◽  
pp. 217-222
Author(s):  
Jean Dupuis ◽  
Stéphane Vennes

We present an analysis of the extreme ultraviolet (EUV) spectroscopy of a sample of 10 DA white dwarfs observed by the Extreme Ultraviolet Explorer (EUVE). We have selected white dwarfs cooler than about 50,000 K and with presumably low heavy element abundances. The goal of this study is to determine the fundamental atmospheric parameters, namely the effective temperature and chemical composition, of these stars by fitting their continua with synthetic spectra computed from pure hydrogen LTE/line-blanketed model atmospheres. The question of the presence (or absence) of trace elements is explored by comparing EUV-determined effective temperatures to the one obtained from a fit of hydrogen balmer lines. It is found that the majority of the DA in the sample are consistent with having a pure hydrogen atmosphere. One of the star, MCT0027-634, is another possible example of a HZ 43-type white dwarf, having an effective temperature above 50000 K and a low heavy element abundance, i.e., much lower than predicted by diffusion theory.


1989 ◽  
Vol 114 ◽  
pp. 253-257
Author(s):  
P. Chayer ◽  
G. Fontaine ◽  
F. Wesemael

The surface composition of a white dwarf evolves as a result of the interaction of several mechanisms, the most important of which being gravitational settling. In the early phases of the evolution, theory shows that selective radiative levitation can occasionally defeat settling and, thus, prevent the formation of a pristine pure hydrogen (helium) atmospheric layer in a hot DA (non-DA) white dwarf (Fontaine and Michaud 1979; Vauclair, Vauclair, and Greenstein 1979). The exciting discovery of sharp metallic features in the ultraviolet spectra of several hot DA and non-DA stars alike resulting from the work of several investigators has provided the essential motivation for further theoretical investigations of radiative levitation in the atmospheres of white dwarfs. Additionnal impetus comes from the continuing investigations of hot DA white dwarfs carried out by Bruhweiler and Kondo which have already revealed a most interesting observational pattern of heavy elements in these stars (Bruhweiler 1985). Moreover the recent availability of theoretical equivalent widths of selected astrophysically important ultraviolet metal lines in hot DA white dwarfs (Henry, Shipman, and Wesemael 1985) makes a comparison between theory and observations -in at least this type of stars- a timely and useful exercise.


2005 ◽  
Vol 363 (1) ◽  
pp. 183-196 ◽  
Author(s):  
S. A. Good ◽  
M. A. Barstow ◽  
M. R. Burleigh ◽  
P. D. Dobbie ◽  
J. B. Holberg ◽  
...  

1996 ◽  
Vol 152 ◽  
pp. 223-228
Author(s):  
David S. Finley

Photometric EUV observations have shown that the hotter DA white dwarfs tend to show significant excess opacity relative to hydrogen. EUV and high-resolution FUV spectroscopy have conclusively demonstrated that the excess opacity is due to the presence of trace heavy elements in the white dwarf photospheres. In the past, the general abundance distribution in hot DA has been studied as a function of temperature, assuming that He was the trace absorber. We present here the first determination of the variation of relative total heavy element abundances in DA as a function of both temperature and gravity using realistic models that include metals. We compare the observational results with theoretical calculations of equilibrium abundances due to radiative acceleration.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


1999 ◽  
Vol 511 (2) ◽  
pp. 639-659 ◽  
Author(s):  
Yuri I. Izotov ◽  
Trinh X. Thuan

2021 ◽  
Author(s):  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Jonathan Lunine ◽  
Bernard Marty ◽  
Thomas Smith ◽  
...  

<p>The current composition of giant planet atmospheres provides information on how such planets formed, and on the origin of the solid building blocks that contributed to their formation. Noble gas abundances and their isotope ratios are among the most valuable pieces of evidence for tracing the origin of the materials from which the giant planets formed. In this review we first outline the current state of knowledge for heavy element abundances in the giant planets and explain what is currently understood about the reservoirs of icy building blocks that could have contributed to the formation of the Ice Giants. We then outline how noble gas isotope ratios have provided details on the original sources of noble gases in various materials throughout the solar system. We follow this with a discussion on how noble gases are trapped in ice and rock that later became the building blocks for the giant planets and how the heavy element abundances could have been locally enriched in the protosolar nebula. We then provide a review of the current state of knowledge of noble gas abundances and isotope ratios in various solar system reservoirs, and discuss measurements needed to understand the origin of the ice giants. Finally, we outline how formation and interior evolution will influence the noble gas abundances and isotope ratios observed in the ice giants today. Measurements that a future atmospheric probe will need to make include (1) the <sup>3</sup>He/<sup>4</sup>He isotope ratio to help constrain the protosolar D/H and <sup>3</sup>He/<sup>4</sup>He; (2) the <sup>20</sup>Ne/<sup>22</sup>Ne and <sup>21</sup>Ne/<sup>22</sup>Ne to separate primordial noble gas reservoirs similar to the approach used in studying meteorites; (3) the Kr/Ar and Xe/Ar to determine if the building blocks were Jupiter-like or similar to 67P/C-G and Chondrites; (4) the krypton isotope ratios for the first giant planet observations of these isotopes; and (5) the xenon isotopes for comparison with the wide range of values represented by solar system reservoirs.</p><p>Mandt, K. E., Mousis, O., Lunine, J., Marty, B., Smith, T., Luspay-Kuti, A., & Aguichine, A. (2020). Tracing the origins of the ice giants through noble gas isotopic composition. Space Science Reviews, 216(5), 1-37.</p>


2012 ◽  
Vol 749 (2) ◽  
pp. 175 ◽  
Author(s):  
Christian I. Johnson ◽  
R. Michael Rich ◽  
Chiaki Kobayashi ◽  
Jon P. Fulbright

1991 ◽  
Vol 148 ◽  
pp. 57-62
Author(s):  
Paul Hodge

The dust content of the Magellanic Clouds can be studied using optical, ultraviolet, infrared and, indirectly, radio wavelength data. All recent studies show that the dust content is lower than that of the Milky Way Galaxy for both Clouds and that the optical properties of the dust are different. At ultraviolet wavelengths, the 2165 Å “bump” in the extinction curve is significantly smaller than in the Galaxy (this now appears NOT to be a consequence of the lower heavy element abundances) and the far ultraviolet (shortward of ˜2000 Å) extinction is greater than in the Galaxy (this IS likely to be a consequence of the lower heavy element abundances). New optical data on background galaxies suggest that the total extinction in the central parts of both the LMC and the SMC is approximately 1.5 magnitudes. High local extinction values are derived from uv and optical observations of star-forming regions, where a spatial correlation with CO detections is sometimes, but not always, found.


1999 ◽  
Vol 190 ◽  
pp. 45-50 ◽  
Author(s):  
John M. Dickey ◽  
Monika Marx-Zimmer ◽  
Christian Düsterberg ◽  
Ulrich Mebold ◽  
Snezana Stanimirović ◽  
...  

Surveys of λ21-cm absorption in the Magellanic System show that the cool phase of the HI is less abundant in the SMC than in the Milky Way, and may be so also in the LMC. The typical cool cloud temperature is colder than in the Milky Way, 30 to 40 K rather than 60 to 75 K. The lower abundance of cool phase HI can be traced to the lower heavy element abundances in the Magellanic environment. The cooler cloud temperatures are somewhat mysterious.


Sign in / Sign up

Export Citation Format

Share Document