scholarly journals A Spectroscopic Survey in the EUV of the “Coolest” Hot DA Stars

1996 ◽  
Vol 152 ◽  
pp. 217-222
Author(s):  
Jean Dupuis ◽  
Stéphane Vennes

We present an analysis of the extreme ultraviolet (EUV) spectroscopy of a sample of 10 DA white dwarfs observed by the Extreme Ultraviolet Explorer (EUVE). We have selected white dwarfs cooler than about 50,000 K and with presumably low heavy element abundances. The goal of this study is to determine the fundamental atmospheric parameters, namely the effective temperature and chemical composition, of these stars by fitting their continua with synthetic spectra computed from pure hydrogen LTE/line-blanketed model atmospheres. The question of the presence (or absence) of trace elements is explored by comparing EUV-determined effective temperatures to the one obtained from a fit of hydrogen balmer lines. It is found that the majority of the DA in the sample are consistent with having a pure hydrogen atmosphere. One of the star, MCT0027-634, is another possible example of a HZ 43-type white dwarf, having an effective temperature above 50000 K and a low heavy element abundance, i.e., much lower than predicted by diffusion theory.

1977 ◽  
Vol 42 ◽  
pp. 242-273 ◽  
Author(s):  
Robert E. Williams

AbstractThe different methods by which element abundances in novae have been determined are reviewed. Curve of growth studies of novae at maximum light have indicated CNO nuclei to be greatly enhanced with respect to hydrogen in certain objects. These results are questionable because they depend upon an assumed temperature distribution in the photosphere which is probably too steep to be realistic. Emission line analyses of novae, generally obtained in the period of early decline, also indicate possible heavy element enhancement, however these results are tentative because of uncertainties in the parameters of the emitting gas. It is suggested that useful abundance determinations of nova ejecta might be obtained from studies of old, extended nova shells.


1989 ◽  
Vol 114 ◽  
pp. 368-372 ◽  
Author(s):  
S. Vennes ◽  
G. Fontaine ◽  
F. Wesemael

Observations of hot DA white dwarfs in the EUV/soft X-ray range have revealed that, in a majority of cases, the detected flux is less than that expected from pure hydrogen atmospheres. This implies an extra opacity source which must be due to the presence of small traces of heavier elements. These elements are generally not spectroscopically detected in hot DA white dwarfs, but the large sensitivity of the EUV/soft X-ray broad-band flux to the presence of extra absorbers can be used with profit to Infer their abundances. For simplicity, it has been assumed that only helium provides the required opacity source in the majority of the analyses carried out so far. In this context, Vennes et al. (1988a) have recently reviewed in details the mechanisms that could be responsible for the presence of small traces of helium in the atmospheres of hot DA white dwarfs. They favor a model in which these stars are interpreted as stratified objects with an outer layer of hydrogen which is sufficiently thick that radiation in the visible escapes only from H-rich regions, and yet sufficiently thin that the EUV/soft X-ray radiation escapes from deeper layers, polluted by the tail of the helium distribution which extends upwards. This model accounts naturally for the positive correlation observed between the inferred helium abundance and the effective temperature in hot DA stars studied at short wavelengths. If the model is correct, hot DA white dwarfs as a class must have very thin outer hydrogen layers with estimated masses in the range–13 > log q(H) = log (M(H)/M) > –15.


1981 ◽  
Vol 93 ◽  
pp. 68-69
Author(s):  
Y. Yoshii ◽  
Y. Sabano

Evolution and fragmentation of a gas cloud are investigated for the primordial chemical composition which is the same as the products of the Big Bang. A pure-hydrogen gas cloud collapses isothermally at 500–1000 K when a low fraction of molecular hydrogen works as a coolant, and breaks into small subcondensations with mass less than 10 M⊙ due to thermal instability associated with molecular dissociation. On the other hand a pure-hydrogen gas cloud which contains no molecular hydrogen collapses isothermally at 6000–8000 K in a thermally stable condition, and enters the region where thermal energy exceeds radiation energy when thermal equilibrium between matter and radiation is achieved in the cloud. Consideration of energetics in the subsequent stage of the cloud evolution leads to the mass range of 0.1–20 M⊙ for the stable nuclear-burning protostars of the first generation. The thermal behavior of a gas cloud in the regime of z (the ratio of heavy element abundance to solar one) less than 10−4 is essentially similar to that in the case of no heavy element, and the heavy element cooling brings about thermal instability in a wide range of parameters in the regime of z greater than 10−3. Linear perturbation analysis gives growth time of the instability much shorter than the free-fall time, and suggests the efficient excitation of density fluctuation driven by thermal instability. Thus the possibility of the initial mass function relatively enhanced in massive star at early times is denied, and the slow rate of metal enrichment in the interstellar medium is suggested.


2019 ◽  
Vol 488 (2) ◽  
pp. 2503-2522 ◽  
Author(s):  
Tim Cunningham ◽  
Pier-Emmanuel Tremblay ◽  
Bernd Freytag ◽  
Hans-Günter Ludwig ◽  
Detlev Koester

Abstract We present a theoretical description of macroscopic diffusion caused by convective overshoot in pure-hydrogen DA white dwarfs using 3D, closed-bottom, radiation hydrodynamics co5bold simulations. We rely on a new grid of deep 3D white dwarf models in the temperature range $11\, 400 \le T_{\mathrm{eff}} \le 18\, 000$ K where tracer particles and a tracer density are used to derive macroscopic diffusion coefficients driven by convective overshoot. These diffusion coefficients are compared to microscopic diffusion coefficients from 1D structures. We find that the mass of the fully mixed region is likely to increase by up to 2.5 orders of magnitude while inferred accretion rates increase by a more moderate order of magnitude. We present evidence that an increase in settling time of up to 2 orders of magnitude is to be expected, which is of significance for time-variability studies of polluted white dwarfs. Our grid also provides the most robust constraint on the onset of convective instabilities in DA white dwarfs to be in the effective temperature range from 18 000 to 18 250 K.


1989 ◽  
Vol 114 ◽  
pp. 253-257
Author(s):  
P. Chayer ◽  
G. Fontaine ◽  
F. Wesemael

The surface composition of a white dwarf evolves as a result of the interaction of several mechanisms, the most important of which being gravitational settling. In the early phases of the evolution, theory shows that selective radiative levitation can occasionally defeat settling and, thus, prevent the formation of a pristine pure hydrogen (helium) atmospheric layer in a hot DA (non-DA) white dwarf (Fontaine and Michaud 1979; Vauclair, Vauclair, and Greenstein 1979). The exciting discovery of sharp metallic features in the ultraviolet spectra of several hot DA and non-DA stars alike resulting from the work of several investigators has provided the essential motivation for further theoretical investigations of radiative levitation in the atmospheres of white dwarfs. Additionnal impetus comes from the continuing investigations of hot DA white dwarfs carried out by Bruhweiler and Kondo which have already revealed a most interesting observational pattern of heavy elements in these stars (Bruhweiler 1985). Moreover the recent availability of theoretical equivalent widths of selected astrophysically important ultraviolet metal lines in hot DA white dwarfs (Henry, Shipman, and Wesemael 1985) makes a comparison between theory and observations -in at least this type of stars- a timely and useful exercise.


2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Donald V. Reames

AbstractSixty years ago the first observation was published showing solar energetic particles (SEPs) with a sampling of chemical elements with atomic numbers $6 \leq Z \leq 18$ 6 ≤ Z ≤ 18 above 40 MeV amu−1. Thus began study of the direct products of dynamic physics in the solar corona. As we have progressed from 4-min sounding-rocket samples to continuous satellite coverage of SEP events, we have extended the observations to the unusual distribution of element abundances throughout the periodic table. Small “impulsive” SEP events from islands of magnetic reconnection on open magnetic-field lines in solar jets generate huge enhancements in abundances of 3He and of the heaviest elements, enhancements increasing as a power of the ion mass-to-charge ratio as ($A$ A /$Q$ Q )3.6, on average. Solar flares involve the same physics but there the SEPs are trapped on closed loops, expending their energy as heat and light. The larger, energetic “gradual” SEP events are accelerated at shock waves driven by fast, wide coronal mass ejections (CMEs). However, these shocks can also reaccelerate ions from pools of residual suprathermal impulsive ions, and CMEs from jets can also drive fast shocks, complicating the picture. The underlying element abundances in SEP events represent the solar corona, which differs from corresponding abundances in the photosphere as a function of the first ionization potential (FIP) of the elements, distinguishing low-FIP (<10 eV) ions from high-FIP neutral atoms as they expand through the chromosphere. Differences in FIP patterns of SEPs and the solar wind may distinguish closed- and open-field regions of formation at the base of the corona. Dependence of SEP acceleration upon $A$ A /$Q$ Q allows best-fit estimation of ion $Q$ Q -values and hence of the source plasma temperature of ∼1 – 3 MK, derived from abundances, which correlates with recent measures of temperatures using extreme ultraviolet emission from jets. Thus, element abundances in SEPs have become a powerful tool to study the underlying solar corona and to probe physical processes of broad astrophysical significance, from the “FIP effect” to magnetic reconnection and shock acceleration. New questions arise, however, about the theoretical basis of correlations of energy-spectral indices with power-laws of abundances, about the coexistence of separate resonant and non-resonant mechanisms for enhancements of 3He and of heavy elements, about occasional events with unusual suppression of He and about the overall paucity of C in FIP comparisons.


2003 ◽  
Vol 341 (3) ◽  
pp. 870-890 ◽  
Author(s):  
M. A. Barstow ◽  
S. A. Good ◽  
J. B. Holberg ◽  
I. Hubeny ◽  
N. P. Bannister ◽  
...  

2005 ◽  
Vol 363 (1) ◽  
pp. 183-196 ◽  
Author(s):  
S. A. Good ◽  
M. A. Barstow ◽  
M. R. Burleigh ◽  
P. D. Dobbie ◽  
J. B. Holberg ◽  
...  

2010 ◽  
Vol 6 (S276) ◽  
pp. 30-33
Author(s):  
Sylvie Vauclair

AbstractStudying the internal structure of exoplanet-host stars compared to that of similar stars without detected planets is particularly important for the understanding of planetary formation. In this framework, asteroseismic studies represent an excellent tool for a better characterization of stars and for a precise determination of the stellar parameters like mass, radius, gravity, effective temperature. The detection of stellar oscillations is obtained with the same instruments as used for the discovery of exoplanets, both from the ground and from space, although the time scales are very different. Here I discuss some details about the characterization of exoplanethost stars from seismology and the importance of the helium and heavy element abundances in this respect.


Sign in / Sign up

Export Citation Format

Share Document