A lower bound for solvability of polynomial equations

Author(s):  
Ketan Mulmuley
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Nasreen Kausar ◽  
Shams Forruque Ahmed ◽  
Nazir Ahmad Mir ◽  
...  

A new inverse family of the iterative method is interrogated in the present article for simultaneously estimating all distinct and multiple roots of nonlinear polynomial equations. Convergence analysis proves that the order of convergence of the newly constructed family of methods is two. The computer algebra systems CAS-Mathematica is used to determine the lower bound of convergence order, which justifies the local convergence of the newly developed method. Some nonlinear models from physics, chemistry, and engineering sciences are considered to demonstrate the performance and efficiency of the newly constructed family of inverse simultaneous methods in comparison to classical methods in the literature. The computational time in seconds and residual error graph of the inverse simultaneous methods are also presented to elaborate their convergence behavior.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Sign in / Sign up

Export Citation Format

Share Document