Small Heat Shock Proteins in Inflammatory Diseases

2020 ◽  
Author(s):  
V. Sudhakar Reddy ◽  
Trinath Jamma ◽  
G. Bhanuprakash Reddy
2018 ◽  
Vol 115 (27) ◽  
pp. 7081-7086 ◽  
Author(s):  
Jonathan B. Rothbard ◽  
Jesse J. Rothbard ◽  
Luis Soares ◽  
C. Garrison Fathman ◽  
Lawrence Steinman

Although certain dogma portrays amyloid fibrils as drivers of neurodegenerative disease and neuroinflammation, we have found, paradoxically, that amyloid fibrils and small heat shock proteins (sHsps) are therapeutic in experimental autoimmune encephalomyelitis (EAE). They reduce clinical paralysis and induce immunosuppressive pathways, diminishing inflammation. A key question was the identification of the target for these molecules. When sHsps and amyloid fibrils were chemically cross-linked to immune cells, a limited number of proteins were precipitated, including the α7 nicotinic acetylcholine receptor (α7 NAChR). The α7 NAChR is noteworthy among the over 20 known receptors for amyloid fibrils, because it plays a central role in a well-defined immune-suppressive pathway. Competitive binding between amyloid fibrils and α-bungarotoxin to peritoneal macrophages (MΦs) confirmed the involvement of α7 NAChR. The mechanism of immune suppression was explored, and, similar to nicotine, amyloid fibrils inhibited LPS induction of a common set of inflammatory cytokines while inducing Stat3 signaling and autophagy. Consistent with this, previous studies have established that nicotine, sHsps, and amyloid fibrils all were effective therapeutics in EAE. Interestingly, B lymphocytes were needed for the therapeutic effect. These results suggest that agonists of α7 NAChR might have therapeutic benefit for a variety of inflammatory diseases.


Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
A.-P. Arrigo

Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 84-96
Author(s):  
Sanchari Bhattacharjee ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

Circulation ◽  
1997 ◽  
Vol 96 (12) ◽  
pp. 4343-4348 ◽  
Author(s):  
Jody L. Martin ◽  
Ruben Mestril ◽  
Randa Hilal-Dandan ◽  
Laurence L. Brunton ◽  
Wolfgang H. Dillmann

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 471-477
Author(s):  
J Roger H Frappier ◽  
David B Walden ◽  
Burr G Atkinson

Abstract Etiolated maize radicles (inbred Oh43) subjected to a brief heat shock synthesize a family of small heat shock proteins (≃18 kD) that is composed of at least 12 members. We previously described the cDNA-derived sequence of three maize shsp mRNAs (cMHSP18-1, cMHSP18-3, and cMHSP18-9). In this report, we demonstrate that the mRNA transcribed in vitro from one of these cDNAs (cMHSP 18-9) is responsible for the synthesis of three members of the shsp family, and we suggest that cMHSP18-3 may be responsible for the synthesis of three additional members and cMHSP18-1 for the synthesis of two other members of this family. The fact that these genes do not contain introns, coupled with the observations reported herein, suggest that maize may have established another method of using a single gene to produce a number of different proteins.


2009 ◽  
Vol 1793 (11) ◽  
pp. 1738-1748 ◽  
Author(s):  
Natalia de Miguel ◽  
Nathalie Braun ◽  
Alexander Bepperling ◽  
Thomas Kriehuber ◽  
Andreas Kastenmüller ◽  
...  

2015 ◽  
Vol 21 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Thomas Schmidt ◽  
Dietmar Fischer ◽  
Anastasia Andreadaki ◽  
Britta Bartelt-Kirbach ◽  
Nikola Golenhofen

Sign in / Sign up

Export Citation Format

Share Document