Small Heat Shock Proteins and Protection Against Ischemic Injury in Cardiac Myocytes

Circulation ◽  
1997 ◽  
Vol 96 (12) ◽  
pp. 4343-4348 ◽  
Author(s):  
Jody L. Martin ◽  
Ruben Mestril ◽  
Randa Hilal-Dandan ◽  
Laurence L. Brunton ◽  
Wolfgang H. Dillmann
1999 ◽  
Vol 7 (1-2) ◽  
pp. 55-57 ◽  
Author(s):  
W. H. Dillmann

Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and αB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hspl0 when coexpressed, and hsp27 and αB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types. Infect. Dis. Obstet. Gynecol. 7:55–57, 1999.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 84-96
Author(s):  
Sanchari Bhattacharjee ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 471-477
Author(s):  
J Roger H Frappier ◽  
David B Walden ◽  
Burr G Atkinson

Abstract Etiolated maize radicles (inbred Oh43) subjected to a brief heat shock synthesize a family of small heat shock proteins (≃18 kD) that is composed of at least 12 members. We previously described the cDNA-derived sequence of three maize shsp mRNAs (cMHSP18-1, cMHSP18-3, and cMHSP18-9). In this report, we demonstrate that the mRNA transcribed in vitro from one of these cDNAs (cMHSP 18-9) is responsible for the synthesis of three members of the shsp family, and we suggest that cMHSP18-3 may be responsible for the synthesis of three additional members and cMHSP18-1 for the synthesis of two other members of this family. The fact that these genes do not contain introns, coupled with the observations reported herein, suggest that maize may have established another method of using a single gene to produce a number of different proteins.


2009 ◽  
Vol 1793 (11) ◽  
pp. 1738-1748 ◽  
Author(s):  
Natalia de Miguel ◽  
Nathalie Braun ◽  
Alexander Bepperling ◽  
Thomas Kriehuber ◽  
Andreas Kastenmüller ◽  
...  

2015 ◽  
Vol 21 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Thomas Schmidt ◽  
Dietmar Fischer ◽  
Anastasia Andreadaki ◽  
Britta Bartelt-Kirbach ◽  
Nikola Golenhofen

Sign in / Sign up

Export Citation Format

Share Document