scholarly journals Doppler Ultrasound Driven Biomechanical Model of the Brain for Intraoperative Brain-Shift Compensation: A Proof of Concept in Clinical Conditions

Author(s):  
Marek Bucki ◽  
Olivier Palombi ◽  
Mathieu Bailet ◽  
Yohan Payan
Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


2016 ◽  
Vol 44 (6) ◽  
pp. 1580-1591 ◽  
Author(s):  
Hernán Jara ◽  
Asim Mian ◽  
Osamu Sakai ◽  
Stephan W. Anderson ◽  
Mitchel J. Horn ◽  
...  

2007 ◽  
Vol 107 (5) ◽  
pp. 989-997 ◽  
Author(s):  
Yasushi Miyagi ◽  
Fumio Shima ◽  
Tomio Sasaki

Object The goal of this study was to focus on the tendency of brain shift during stereotactic neurosurgery and the shift's impact on the unilateral and bilateral implantation of electrodes for deep brain stimulation (DBS). Methods Eight unilateral and 10 bilateral DBS electrodes at 10 nuclei ventrales intermedii and 18 subthalamic nuclei were implanted in patients at Kaizuka Hospital with the aid of magnetic resonance (MR) imaging–guided and microelectrode-guided methods. Brain shift was assessed as changes in the 3D coordinates of the anterior and posterior commissures (AC and PC) with MR images before and immediately after the implantation surgery. The positions of the implanted electrodes, based on the midcommissural point and AC–PC line, were measured both on x-ray films (virtual position) during surgery and the postoperative MR images (actual position) obtained on the 7th day postoperatively. Results Contralateral and posterior shift of the AC and PC were the characteristics of unilateral and bilateral procedures, respectively. The authors suggest the following. 1) The first unilateral procedure elicits a unilateral air invasion, resulting in a contralateral brain shift. 2) During the second procedure in the bilateral surgery, the contralateral shift is reset to the midline and, at the same time, the anteroposterior support by the contralateral hemisphere against gravity is lost due to a bilateral air invasion, resulting in a significant posterior (caudal) shift. Conclusions To note the tendency of the brain to shift is very important for accurate implantation of a DBS electrode or high frequency thermocoagulation, as well as for the prediction of therapeutic and adverse effects of stereotactic surgery.


Author(s):  
C. Lürig ◽  
P. Hastreiter ◽  
C. Nimsky ◽  
T. Ertl
Keyword(s):  

2019 ◽  
Vol 8 (3) ◽  
pp. 162
Author(s):  
Aloka Samantaray ◽  
Hemanth Natham ◽  
Mukkara Madhusudan ◽  
Hemalatha Pasupuleti

2020 ◽  
Vol 41 (7) ◽  
pp. 1193-1200
Author(s):  
R.F. Barajas ◽  
D. Schwartz ◽  
H.L. McConnell ◽  
C.N. Kersch ◽  
X. Li ◽  
...  
Keyword(s):  

2019 ◽  
Vol 12 (3) ◽  
pp. 138 ◽  
Author(s):  
Robert R. Crichton ◽  
Roberta J. Ward ◽  
Robert C. Hider

Iron chelation therapy, either subcutaneous or orally administered, has been used successfully in various clinical conditions. The removal of excess iron from various tissues, e.g., the liver spleen, heart, and the pituitary, in beta thalassemia patients, has become an essential therapy to prolong life. More recently, the use of deferiprone to chelate iron from various brain regions in Parkinson’s Disease and Friederich’s Ataxia has yielded encouraging results, although the side effects, in <2% of Parkinson’s Disease(PD) patients, have limited its long-term use. A new class of hydroxpyridinones has recently been synthesised, which showed no adverse effects in preliminary trials. A vital question remaining is whether inflammation may influence chelation efficacy, with a recent study suggesting that high levels of inflammation may diminish the ability of the chelator to bind the excess iron.


Sign in / Sign up

Export Citation Format

Share Document