Role of Echocardiography in the Management of Atrial Fibrillation Patients

2006 ◽  
pp. 91-97
Author(s):  
F. Antonini-Canterin ◽  
G. Allocca ◽  
D. Rivaben ◽  
R. Korcova-Miertusova ◽  
R. Piazza ◽  
...  
Keyword(s):  
2004 ◽  
Vol 52 (S 1) ◽  
Author(s):  
S Dhein ◽  
A Boldt ◽  
J Garbade ◽  
L Polontchouk ◽  
U Wetzel ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2406-PUB
Author(s):  
KONSTANTINA KANELLOPOULOU ◽  
IOANNIS L. MATSOUKIS ◽  
ASIMINA GANOTOPOULOU ◽  
THEODORA ATHANASOPOULOU ◽  
CHRYSOULA TRIANTAFILLOPOULOU ◽  
...  

2019 ◽  
Vol 26 (5) ◽  
pp. 837-854 ◽  
Author(s):  
Effimia Zacharia ◽  
Nikolaos Papageorgiou ◽  
Adam Ioannou ◽  
Gerasimos Siasos ◽  
Spyridon Papaioannou ◽  
...  

During the last few years, a significant number of studies have attempted to clarify the underlying mechanisms that lead to the presentation of atrial fibrillation (AF). Inflammation is a key component of the pathophysiological processes that lead to the development of AF; the amplification of inflammatory pathways triggers AF, and, in tandem, AF increases the inflammatory state. Indeed, the plasma levels of several inflammatory biomarkers are elevated in patients with AF. In addition, the levels of specific inflammatory biomarkers may provide information regarding to the AF duration. Several small studies have assessed the role of anti-inflammatory treatment in atrial fibrillation but the results have been contradictory. Large-scale studies are needed to evaluate the role of inflammation in AF and whether anti-inflammatory medications should be routinely administered to patients with AF.


2019 ◽  
Vol 26 (5) ◽  
pp. 765-779 ◽  
Author(s):  
Alexios S. Antonopoulos ◽  
Athina Goliopoulou ◽  
Evangelos Oikonomou ◽  
Sotiris Tsalamandris ◽  
Georgios-Angelos Papamikroulis ◽  
...  

Background: Myocardial redox state is a critical determinant of atrial biology, regulating cardiomyocyte apoptosis, ion channel function, and cardiac hypertrophy/fibrosis and function. Nevertheless, it remains unclear whether the targeting of atrial redox state is a rational therapeutic strategy for atrial fibrillation prevention. Objective: To review the role of atrial redox state and anti-oxidant therapies in atrial fibrillation. Method: Published literature in Medline was searched for experimental and clinical evidence linking myocardial redox state with atrial fibrillation pathogenesis as well as studies looking into the role of redoxtargeting therapies in the prevention of atrial fibrillation. Results: Data from animal models have shown that altered myocardial nitroso-redox balance and NADPH oxidases activity are causally involved in the pathogenesis of atrial fibrillation. Similarly experimental animal data supports that increased reactive oxygen / nitrogen species formation in the atrial tissue is associated with altered electrophysiological properties of atrial myocytes and electrical remodeling, favoring atrial fibrillation development. In humans, randomized clinical studies using redox-related therapeutic approaches (e.g. statins or antioxidant agents) have not documented any benefits in the prevention of atrial fibrillation development (mainly post-operative atrial fibrillation risk). Conclusion: Despite strong experimental and translational data supporting the role of atrial redox state in atrial fibrillation pathogenesis, such mechanistic evidence has not been translated to clinical benefits in atrial fibrillation risk in randomized clinical studies using redox-related therapies.


Author(s):  
Zsuzsanna Kis ◽  
Astrid Amanda Hendriks ◽  
Taulant Muka ◽  
Wichor M. Bramer ◽  
Istvan Kovacs ◽  
...  

Introduction: Atrial Fibrillation (AF) is associated with remodeling of the atrial tissue, which leads to fibrosis that can contribute to the initiation and maintenance of AF. Delayed- Enhanced Cardiac Magnetic Resonance (DE-CMR) imaging for atrial wall fibrosis detection was used in several studies to guide AF ablation. The aim of present study was to systematically review the literature on the role of atrial fibrosis detected by DE-CMR imaging on AF ablation outcome. Methods: Eight bibliographic electronic databases were searched to identify all published relevant studies until 21st of March, 2016. Search of the scientific literature was performed for studies describing DE-CMR imaging on atrial fibrosis in AF patients underwent Pulmonary Vein Isolation (PVI). Results: Of the 763 citations reviewed for eligibility, 5 articles (enrolling a total of 1040 patients) were included into the final analysis. The overall recurrence of AF ranged from 24.4 - 40.9% with median follow-up of 324 to 540 days after PVI. With less than 5-10% fibrosis in the atrial wall there was a maximum of 10% recurrence of AF after ablation. With more than 35% fibrosis in the atrial wall there was 86% recurrence of AF after ablation. Conclusion: Our analysis suggests that more extensive left atrial wall fibrosis prior ablation predicts the higher arrhythmia recurrence rate after PVI. The DE-CMR imaging modality seems to be a useful method for identifying the ideal candidate for catheter ablation. Our findings encourage wider usage of DE-CMR in distinct AF patients in a pre-ablation setting.


2020 ◽  
Vol 27 (2) ◽  
pp. e183-e193
Author(s):  
Dragos Vinereanu ◽  
Jindrich Spinar ◽  
Atul Pathak ◽  
Dariusz Kozlowski

Sign in / Sign up

Export Citation Format

Share Document