human atrial fibrillation
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 23)

H-INDEX

47
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Pierre Bredeloux ◽  
Come Pasqualin ◽  
Romain Bordy ◽  
Veronique Maupoil ◽  
Ian Findlay

Ectopic activity in the pulmonary vein cardiac muscle sleeves can both induce and maintain human atrial fibrillation. A central issue in any study of the pulmonary veins is their difference from the left atrial cardiac muscle. Here, we attempt to summarize the physiological phenomena underlying the occurrence of ectopic electrical activity in animal pulmonary veins. We emphasize that the activation of multiple signaling pathways influencing not only myocyte electrophysiology but also the means of excitation–contraction coupling may be required for the initiation of triggered or automatic activity. We also gather information regarding not only the large-scale structure of cardiac muscle sleeves but also recent studies suggesting that cellular heterogeneity may contribute to the generation of arrythmogenic phenomena and to the distinction between pulmonary vein and left atrial heart muscle.


2021 ◽  
Author(s):  
Madeline Schopp ◽  
Dhani Dharmaprani ◽  
Pawel Kuklik ◽  
Jing Quah ◽  
Anandaroop Lahiri ◽  
...  

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
N Harlaar ◽  
SO Dekker ◽  
J Zhang ◽  
MJ Schalij ◽  
RJM Klautz ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public hospital(s). Main funding source(s): LUMC Background Current in vitro models of atrial fibrillation have limited translational potential due to a lack of relevant human physiology or the inability to reach the high activation frequencies present in human atrial fibrillation. Absence of relevant models is the result of a general deficit of readily available and standardized sources of well-differentiated human atrial cardiomyocytes. Therefore, we aimed to immortalize native human atrial cardiomyocytes to produce natural and standardized lines of these cells. Methods Human fetal atrial cardiomyocytes were transduced with a lentiviral vector directing myocyte-specific and doxycycline-inducible expression of simian virus 40 large T antigen. Addition of doxycycline to the culture medium pushed cardiomyocytes towards a highly proliferative phenotype (proliferation up to 10^12 cells). These cells were labelled hiAMs (human immortalised Atrial Myocytes). After differentiation upon doxycycline removal, hiAM cells were characterized using various molecular, biological and electrophysiological assays. Results Following cardiomyogenic differentiation, hiAMs no longer expressed the proliferation marker Ki67, revealed striated α-actinin and troponin T staining patterns and displayed synchronous contractions. Optical voltage mapping of hiAM monolayers revealed excitable cells showing homogeneous spreading of action potentials at 22.5 ± 3.1 cm/s with a mean APD80 of 139 ± 22 ms. Addition of flecainide (10 µM) to hiAM monolayers decreased the conduction velocity by 35% and increased the APD80 by 107%. Dofetilide (10 nM) addition had no effect on the conduction velocity, but did increase the APD80 by 81%. Due to their scalability, monolayers of hiAMs as big as 10 cm2 showing homogenous action potential propagation could easily be created. Following high-frequency electrical pacing, rotors could be induced with an average activation frequency of 7.5 ± 0.9 Hz. Infusion of flecainide during arrhythmic activity resulted in termination of the rotor in 18 of 24 attempts (75%), whereas addition of 0.1% DMSO (vehicle control) did not result in termination in any of the attempts. Dofetilide infusion did not result in termination. However, it did lower the average activation frequency to 2.1 ± 0.7 Hz. Conclusion We have generated first-of-a-kind lines of human atrial cardiomyocytes, allowing massive cell expansion under proliferation conditions and robust formation of cross-striated, contractile and excitable cardiomyocytes after differentiation. These characteristics allow, for the first time, the modelling, at a large-scale, of human atrial arrhythmias with frequencies similar to human atrial fibrillation. With the generation of hiAMs, a user-friendly, clinically-relevant and much-anticipated human atrial research model has been produced. Abstract Figure. hiAM AF Model


2021 ◽  
Vol 12 ◽  
Author(s):  
Richard T. Carrick ◽  
Bryce E. Benson ◽  
Oliver R. J. Bates ◽  
Peter S. Spector

BackgroundThere is debate whether human atrial fibrillation is driven by focal drivers or multiwavelet reentry. We propose that the changing activation sequences surrounding a focal driver can at times self-sustain in the absence of that driver. Further, the relationship between focal drivers and surrounding chaotic activation is bidirectional; focal drivers can generate chaotic activation, which may affect the dynamics of focal drivers.Methods and ResultsIn a propagation model, we generated tissues that support structural micro-reentry and moving functional reentrant circuits. We qualitatively assessed (1) the tissue’s ability to support self-sustaining fibrillation after elimination of the focal driver, (2) the impact that structural-reentrant substrate has on the duration of fibrillation, the impact that micro-reentrant (3) frequency, (4) excitable gap, and (5) exposure to surrounding fibrillation have on micro-reentry in the setting of chaotic activation, and finally the likelihood fibrillation will end in structural reentry based on (6) the distance between and (7) the relative lengths of an ablated tissue’s inner and outer boundaries. We found (1) focal drivers produced chaotic activation when waves encountered heterogeneous refractoriness; chaotic activation could then repeatedly initiate and terminate micro-reentry. Perpetuation of fibrillation following elimination of micro-reentry was predicted by tissue properties. (2) Duration of fibrillation was increased by the presence of a structural micro-reentrant substrate only when surrounding tissue had a low propensity to support self-sustaining chaotic activation. Likelihood of micro-reentry around the structural reentrant substrate increased as (3) the frequency of structural reentry increased relative to the frequency of fibrillation in the surrounding tissue, (4) the excitable gap of micro-reentry increased, and (5) the exposure of the structural circuit to the surrounding tissue decreased. Likelihood of organized tachycardia following termination of fibrillation increased with (6) decreasing distance and (7) disparity of size between focal obstacle and external boundary.ConclusionFocal drivers such as structural micro-reentry and the chaotic activation they produce are continuously interacting with one another. In order to accurately describe cardiac tissue’s propensity to support fibrillation, the relative characteristics of both stationary and moving drivers must be taken into account.


Author(s):  
Michelle L. Munro ◽  
Isabelle van Hout ◽  
Hamish M. Aitken-Buck ◽  
Ramanen Sugunesegran ◽  
Krishna Bhagwat ◽  
...  

The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2 have been suggested to alter the activity of the channel, with remodeling of RyR2 clusters identified in pre-clinical models of AF and heart failure. Whether such remodeling occurs in human cardiac disease remains unclear. This study aimed to investigate the nanoscale organization of RyR2 clusters in AF patients – the first known study to examine this potential remodeling in diseased human cardiomyocytes. Right atrial appendage from cardiac surgery patients with paroxysmal or persistent AF, or without AF (non-AF) were examined using super-resolution (dSTORM) imaging. Significant atrial dilation and cardiomyocyte hypertrophy was observed in persistent AF patients compared to non-AF, with these two parameters significantly correlated. Interestingly, the clustering properties of RyR2 were remarkably unaltered in the AF patients. No significant differences were identified in cluster size (mean ∼18 RyR2 channels), density or channel packing within clusters between patient groups. The spatial organization of clusters throughout the cardiomyocyte was also unchanged across the groups. RyR2 clustering properties did not significantly correlate with patient characteristics. In this first study to examine nanoscale RyR2 organization in human cardiac disease, these findings indicate that RyR2 cluster remodeling is not an underlying mechanism contributing to altered channel function and subsequent arrhythmogenesis in human AF.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sha Xu ◽  
Hui Tao ◽  
Wei Cao ◽  
Li Cao ◽  
Yan Lin ◽  
...  

AbstractIn addition to their use in relieving the symptoms of various diseases, ketogenic diets (KDs) have also been adopted by healthy individuals to prevent being overweight. Herein, we reported that prolonged KD exposure induced cardiac fibrosis. In rats, KD or frequent deep fasting decreased mitochondrial biogenesis, reduced cell respiration, and increased cardiomyocyte apoptosis and cardiac fibrosis. Mechanistically, increased levels of the ketone body β-hydroxybutyrate (β-OHB), an HDAC2 inhibitor, promoted histone acetylation of the Sirt7 promoter and activated Sirt7 transcription. This in turn inhibited the transcription of mitochondrial ribosome-encoding genes and mitochondrial biogenesis, leading to cardiomyocyte apoptosis and cardiac fibrosis. Exogenous β-OHB administration mimicked the effects of a KD in rats. Notably, increased β-OHB levels and SIRT7 expression, decreased mitochondrial biogenesis, and increased cardiac fibrosis were detected in human atrial fibrillation heart tissues. Our results highlighted the unknown detrimental effects of KDs and provided insights into strategies for preventing cardiac fibrosis in patients for whom KDs are medically necessary.


Sign in / Sign up

Export Citation Format

Share Document