scholarly journals A Rapid Two-Step Iduronate-2-Sulfatatse Enzymatic Activity Assay for MPSII Pharmacokinetic Assessment

2017 ◽  
pp. 89-95 ◽  
Author(s):  
Mitra Azadeh ◽  
Luying Pan ◽  
Yongchang Qiu ◽  
Ruben Boado
2020 ◽  
Vol 8 ◽  
Author(s):  
Eleni Pitsillou ◽  
Julia Liang ◽  
Katherine Ververis ◽  
Kah Wai Lim ◽  
Andrew Hung ◽  
...  

COVID-19 is an ongoing pandemic caused by the SARS-CoV-2 virus with important political, socio-economic, and public health consequences. Inhibiting replication represents an important antiviral approach, and in this context two viral proteases, the SARS-CoV-2 main and papain-like proteases (PLpro), which cleave pp1a and pp1ab polypeptides, are critical. Along with protease activity, the PLpro possesses deubiquitinating activity, which is important in immune regulation. Naphthalene-based inhibitors, such as the well-investigated GRL-0617 compound, have been shown to possess dual effects, inhibiting both protease and deubiquitinating activity of the PLpro. Rather than binding to the canonical catalytic triad, these type of non-covalent inhibitors target an adjacent pocket, the naphthalene-inhibitor binding site. Using a high-throughput screen, we have previously identified the dietary hypericin, rutin, and cyanidin-3-O-glucoside compounds as potential protease inhibitors targeting the naphthalene-inhibitor binding site. Here, our aim was to investigate the binding characteristics of these compounds to the PLpro, and to evaluate deubiquitinating activity, by analyzing seven different PLpro crystal structures. Molecular docking highlighted the relatively high affinity of GRL-0617 and dietary compounds. In contrast binding of the small molecules was abolished in the presence of ubiquitin in the palm subdomain of the PLpro. Further, docking the small molecules in the naphthalene-inhibitor binding site, followed by protein-protein docking revealed displacement of ubiquitin in a conformation inconsistent with functional activity. Finally, the deubiquitinating activity was validated in vitro using an enzymatic activity assay. The findings indicated that the dietary compounds inhibited deubiquitinase activity in the micromolar range with an order of activity of GRL-0167, hypericin >> rutin, cyanidin-3-O-glucoside > epigallocatechin gallate, epicatechin gallate, and cefotaxime. Our findings are in accordance with mechanisms and potential antiviral effects of the naphthalene-based, GRL-0617 inhibitor, which is currently progressing in preclinical trials. Further, our findings indicate that in particular hypericin, rutin, and cyanidin-3-O-glucoside, represent suitable candidates for subsequent evaluation as PLpro inhibitors.


2008 ◽  
Vol 9 (9) ◽  
pp. 2301-2308 ◽  
Author(s):  
Jun Oishi ◽  
Yoji Asami ◽  
Takeshi Mori ◽  
Jeong-Hun Kang ◽  
Takuro Niidome ◽  
...  

Author(s):  
Min-Young Park ◽  
Dong-Hyun Kang

The aim of this study was to evaluate the antibacterial activity of caffeic acid (CA) which is a natural polyphenol, combined with Ultraviolet-A (UV-A) light against the representative foodborne bacteria, Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The inactivation results were obtained depending on the CA concentration, light wavelength and light dose.E. coli O157:H7 and S. Typhimurium were reduced to the detection limit when treated with 3 mM CA and UV-A for 3 J/cm2 and 4 J/cm2 respectively, and 5 J/cm2 treatment induced 3.10 log reduction in L. monocytogenes. To investigate the inactivation mechanism, measurement of polyphenol uptake, membrane damage assessment, enzymatic activity assay, and transmission electron microscopy (TEM) were conducted against S. Typhimurium and L. monocytogenes. It was revealed that CA was significantly (P < 0.05) absorbed by bacterial cells, and UV-A light allowed a higher uptake of CA for both pathogens. Additionally, CA + UV-A treatment induced significant (P < 0.05) cell membrane damage. In the enzymatic activity assay, both pathogens showed a reduction in their activity by CA and a higher reduction occurred by CA + UV-A. Moreover, TEM images indicated that CA + UV-A treatment notably destroyed the intercellular structure. In addition, antibacterial activity was also observed in commercial apple juice, which showed similar results to those obtained from PBS, resulting in a significant (P < 0.05) reduction for all three pathogens without any changes in color parameters (L*, a*, and b*), total phenolic compounds and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity. IMPORTANCE Photodynamic inactivation (PDI), which involves photoactivation of a photosensitizer (PS), is an emerging field of study as it effectively reduces various kinds of microorganisms. Although there are several PSs that have been used for PDI, there is a need to find naturally occurring PSs for safer application in food industry. Caffeic acid, a natural polyphenol found in most of fruits and vegetables, has recently been studied for its potential to act as a novel photosensitizer. However, no studies have been conducted regarding its antibacterial activity depending on treatment conditions and its antibacterial mechanism. In this study we closely examined the effectiveness of caffeic acid in combination with UV-A light for inactivating representative foodborne bacteria in liquid medium. Therefore, the results of this research are expected to be utilized as basic data for future application of caffeic acid in PDI, especially when controlling pathogens in liquid food processing.


2017 ◽  
Vol 618 ◽  
pp. 45-51 ◽  
Author(s):  
Hou-Fu Guo ◽  
Eun Jeong Cho ◽  
Ashwini K. Devkota ◽  
Yulong Chen ◽  
William Russell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document