natural polyphenol
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 97)

H-INDEX

26
(FIVE YEARS 7)

2022 ◽  
pp. candisc.0808.2021
Author(s):  
Meriem Messaoudene ◽  
Reilly Pidgeon ◽  
Corentin Richard ◽  
Mayra Ponce ◽  
Khoudia Diop ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 227
Author(s):  
Mariaconcetta Sicurella ◽  
Maddalena Sguizzato ◽  
Paolo Mariani ◽  
Alessia Pepe ◽  
Anna Baldisserotto ◽  
...  

Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical–chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Soudeh Ghafouri-Fard ◽  
Hamed Shoorei ◽  
Zahra Bahroudi ◽  
Bashdar Mahmud Hussen ◽  
Seyedeh Fahimeh Talebi ◽  
...  

Curcumin is a natural polyphenol with antioxidant, antibacterial, anti-cancer, and anti-inflammation effects. This substance has been shown to affect the activity of Nrf2 signaling, a pathway that is activated in response to stress and decreases levels of reactive oxygen species and electrophilic substances. Nrf2-related effects of curcumin have been investigated in different contexts, including gastrointestinal disorders, ischemia-reperfusion injury, diabetes mellitus, nervous system diseases, renal diseases, pulmonary diseases, cardiovascular diseases as well as cancers. In the current review, we discuss the Nrf2-mediated therapeutic effects of curcumin in these conditions. The data reviewed in the current manuscript indicates curcumin as a potential activator of Nrf2 and a therapeutic substance for the protection of cells in several pathological conditions.


2022 ◽  
pp. 128145
Author(s):  
Meifeng Li ◽  
Xiaoling Wang ◽  
Guidong Gong ◽  
Yi Tang ◽  
Yaoyao Zhang ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 112
Author(s):  
Takao Tsujioka ◽  
Daisuke Sasaki ◽  
Atsuhito Takeda ◽  
Hideyoshi Harashima ◽  
Yuma Yamada

The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancreatic β cells (β-MEND) that was previously developed in our laboratory. Resveratrol (RES), a natural polyphenol compound that has a cardioprotective effect, was encapsulated in the β-MEND (β-MEND (RES)), and its efficacy was evaluated using rat myocardioblasts (H9c2 cells). The β-MEND (RES) was readily taken up by H9c2 cells, as verified by fluorescence-activated cell sorter data, and was observed to be colocalized with intracellular mitochondria by confocal laser scanning microscopy. Myocardial mitochondrial function was evaluated by a Seahorse XF Analyzer and the results showed that the β-MEND (RES) significantly activated cellular maximal respiratory capacity. In addition, the β-MEND (RES) showed no cellular toxicity for H9c2 cells as evidenced by Premix WST-1 assays. This is the first report of the use of a myocardial mitochondria-targeting liposome encapsulating RES for activating mitochondrial function, which was clearly confirmed based on analyses using a Seahorse XF Analyzer.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marziyeh Salami ◽  
Raziyeh Salami ◽  
Alireza Mafi ◽  
Mohammad-Hossein Aarabi ◽  
Omid Vakili ◽  
...  

Background: Diabetic nephropathy (DN) as a severe complication of diabetes mellitus (DM), is a crucial menace for human health and survival and remarkably elevates the healthcare systems’ costs. Therefore, it is worth noting to identify novel preventive and therapeutic strategies to alleviate the disease conditions. Resveratrol, as a well-defined anti-diabetic/ antioxidant agent has capabilities to counteract diabetic complications. It has been predicted that resveratrol will be a fantastic natural polyphenol for diabetes therapy in the next few years. Objective: Accordingly, the current review aims to depict the role of resveratrol in the regulation of different signaling pathways that are involved in the reactive oxygen species (ROS) production, inflammatory processes, autophagy, and mitochondrial dysfunction, as critical contributors to DN pathophysiology. Results: The pathogenesis of DN can be multifactorial; hyperglycemia is one of the prominent risk factors of DN development that is closely related to oxidative stress. Resveratrol, as a well-defined polyphenol, has various biological and medicinal properties, including anti-diabetic, anti-inflammatory, and anti-oxidative effects. Conclusion : Resveratrol prevents kidney damages that are caused by oxidative stress, enhances antioxidant capacity, and attenuates the inflammatory and fibrotic responses. For this reason, resveratrol is considered an interesting target in DN research due to its therapeutic possibilities during diabetic disorders and renal protection.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tomohiro Umeda ◽  
Ayumi Sakai ◽  
Keiko Shigemori ◽  
Ayumi Yokota ◽  
Toru Kumagai ◽  
...  

Amyloidogenic protein oligomers are thought to play an important role in the pathogenesis of neurodegenerative dementia, including Alzheimer’s disease, frontotemporal dementia, and dementia with Lewy bodies. Previously we demonstrated that oral or intranasal rifampicin improved the cognition of APP-, tau-, and α-synuclein-transgenic mice by reducing the amount of Aβ, tau, and α-synuclein oligomers in the brain. In the present study, to explore more effective and safer medications for dementia, we tested the drug combination of rifampicin and resveratrol, which is a multifunctional natural polyphenol with the potential to antagonize the adverse effects of rifampicin. The mixture was intranasally administered to APP-, tau-, and α-synuclein-transgenic mice, and their memory and oligomer-related pathologies were evaluated. Compared with rifampicin and resveratrol alone, the combinatorial medicine significantly improved mouse cognition, reduced amyloid oligomer accumulation, and recovered synaptophysin levels in the hippocampus. The plasma levels of liver enzymes, which reflect hepatic injury and normally increase by rifampicin treatment, remained normal by the combination treatment. Notably, resveratrol alone and the combinatorial medicine, but not rifampicin alone, enhanced the levels of brain-derived neurotrophic factor (BDNF) and its precursor, pro-BDNF, in the hippocampus. Furthermore, the combination showed a synergistic effect in ameliorating mouse cognition. These results show the advantages of this combinatorial medicine with regards to safety and effectiveness over single-drug rifampicin. Our findings may provide a feasible means for the prevention of neurodegenerative dementia that targets toxic oligomers.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Meng Zhou ◽  
Dacheng Wang ◽  
Jing Tang

Objectives. Osteoarthritis (OA) is a chronic joint degenerative disease and has become an important health problem for the elderly. However, there is still a lack of effective drugs for the treatment of OA. Our research combines bioinformatics and experimental strategies to determine the target of resveratrol for OA treatment. Methods. First, the differentially expressed genes (DEGs) of OA joint tissues were obtained from the related microarray gene expression data. Second, resveratrol, a natural polyphenol compound, was used to screen the drug treatment target genes. Third, the drug-disease network was established, and the resveratrol target genes for OA treatment were obtained and verified through experimental verification. Results. A total of 300 differentially expressed genes with 246 upregulated and 54 downregulated were found in OA joint tissues, and 310 resveratrol potential target genes were obtained. Finally, six genes, namely, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2, were selected to validate the treatment effects of the resveratrol. The results showed that all six genes in human OA chondrocytes were significantly increased. In addition, in these chondrocytes, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 were reduced considerably, but HIF1A was significantly increased after resveratrol treatment. Conclusions. Our data indicates that CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 are all targets of resveratrol therapy. Our findings may provide valuable information for the mechanism and therapeutic of OA.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 625
Author(s):  
Tianjian Tong ◽  
Xiaoyang Liu ◽  
Chenxu Yu

This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6557
Author(s):  
Yinping Jin ◽  
Ling Li ◽  
Reshmi Akter ◽  
Esrat Jahan Rupa ◽  
Deok-Chun Yang ◽  
...  

This study demonstrated the synthesis of o-carboxymethyl chitosan (CMC)-stabilized zinc oxide nanocomposites (ZnO NCs) combined with aqueous leaves extracts of hydroponically cultured ginseng and used as a photocatalyst for the degradation of hazardous dyes, including malachite green (MG), rhodamine B (RB), and congo red (CR) under ultraviolet illumination. Hydroponic ginseng leaves contain bioactive components, namely ginsenoside and natural polyphenol, which prompt ginseng’s biological effect. Besides, the CMC polymer is naturally biodegradable, stabilizes the nanoformation and enhances the solubility of ginsenoside. The hydroponic ginseng leaves zinc oxide CMC nanocomposites (GL–CMC–ZnO NCs) were synthesized using the co-precipitation method and characterized using different analytical methods. The FTIR analysis identified significant phytochemicals in the leaves extracts and cotton-shape morphology observed using FE-TEM analysis. The XRD analysis also determined that the crystallite size was 28 nm. The photocatalyst degraded CR, RB, and MG dyes by approximately 87%, 94%, and 96% within contact times of 10, 20, 25, and 30 min, respectively, when the dye concentration was 15 mg/L. As far as our knowledge, this is the first report on hydroponic ginseng NCs incorporated with the CMC polymer for the degradation of hazardous dyes on wastewater treatment. This study can add significant value to large-scale wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document