Climate Change and Forest Fire Activity in North American Boreal Forests

Author(s):  
Brian J. Stocks ◽  
Michael A. Fosberg ◽  
Michael B. Wotton ◽  
Timothy J. Lynham ◽  
Kevin C. Ryan
2016 ◽  
Vol 16 (1) ◽  
pp. 239-253 ◽  
Author(s):  
I. Lehtonen ◽  
A. Venäläinen ◽  
M. Kämäräinen ◽  
H. Peltola ◽  
H. Gregow

Abstract. The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996–2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 981
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Travis Warziniack

Climate change, with warming temperatures and shifting precipitation patterns, may increase natural-caused forest fire activity. Increasing natural-caused fires throughout western United States national forests could place people, property, and infrastructure at risk in the future. We used the fine K nearest neighbor (KNN) method coupled with the downscaled Multivariate Adaptive Constructed Analogs (MACA) climate dataset to estimate changes in the rate of natural-caused fires in western United States national forests. We projected changes in the rate of minor and major forest fires from historical (1986–2015) to future (2070–2099) conditions to characterize fire-prone national forests under a range of climate change scenarios. The results indicate that climate change can add to the occurrence of forest fires in western United States national forests, particularly in Rocky Mountain, Pacific Southwest, and Southwestern United States Forest Service regions. Although summer months are projected to have the highest rate of natural-caused forest fire activity in the future, the rate of natural-caused forest fires is likely to increase from August to December in the future compared to the historical conditions. Improved understanding of altered forest fire regimes can help forest managers to better understand the potential effects of climate change on future fire activity and implement actions to attenuate possible negative consequences.


2016 ◽  
Vol 113 (42) ◽  
pp. 11770-11775 ◽  
Author(s):  
John T. Abatzoglou ◽  
A. Park Williams

Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.


2006 ◽  
Vol 15 (3) ◽  
pp. 375 ◽  
Author(s):  
Martin P. Girardin ◽  
Yves Bergeron ◽  
Jacques C. Tardif ◽  
Sylvie Gauthier ◽  
Mike D. Flannigan ◽  
...  

Six independent tree-ring reconstructions of summer drought were calibrated against instrumental fire data to develop a 229-year dendroclimatic-inferred record of fire activity (annual area burned and fire occurrence) on the Boreal Shield, Canada. As a means of validating the statistical reconstructions of the fire activity, a comparison was made with a stand age distribution derived from a regional time-since-last-fire map for an area located at the transition between the mixedwood and coniferous boreal forests of south-western Quebec. Calibration statistics indicated that 31% of the area burned variance and 45% of the fire occurrence variance could be accounted for by the six drought reconstructions. The verification statistics indicated a tendency for the statistical reconstructions of the fire activity to reproduce with confidence both high and relatively low frequency variations in fire. Episodes of succeeding years with important fire activity were estimated for 1789–1796, 1820–1823, 1837–1841, 1862–1866, 1906–1912, 1919–1922, 1933–1938, and 1974–1977. Also estimated were periods of reduced forest fire activity, particularly in the occurrence rate of extreme fire years, from c. 1850 to 1900 and again during the second half of the 20th century. Correlation analysis between the statistical reconstruction of the area burned and the stand age distribution suggested that both proxies shared similar information on the fire activity. Correlation maps, however, indicated that variability in the statistical reconstructions was not necessarily representative of fire activity in all regions of the Boreal Shield.


2017 ◽  
Vol 88 (1) ◽  
pp. 74-91 ◽  
Author(s):  
Tuomas Aakala ◽  
Leena Pasanen ◽  
Samuli Helama ◽  
Ville Vakkari ◽  
Igor Drobyshev ◽  
...  

2010 ◽  
Vol 19 (3) ◽  
pp. 253 ◽  
Author(s):  
B. M. Wotton ◽  
C. A. Nock ◽  
M. D. Flannigan

The structure and function of the boreal forest are significantly influenced by forest fires. The ignition and growth of fires depend quite strongly on weather; thus, climate change can be expected to have a considerable impact on forest fire activity and hence the structure of the boreal forest. Forest fire occurrence is an extremely important element of fire activity as it defines the load on suppression resources a fire management agency will face. We used two general circulation models (GCMs) to develop projections of future fire occurrence across Canada. While fire numbers are projected to increase across all forested regions studied, the relative increase in number of fires varies regionally. Overall across Canada, our results from the Canadian Climate Centre GCM scenarios suggest an increase in fire occurrence of 25% by 2030 and 75% by the end of the 21st century. Results projected from fire climate scenarios derived from the Hadley Centre GCM suggest fire occurrence will increase by 140% by the end of this century. These general increases in fire occurrence across Canada agree with other regional and national studies of the impacts of climate change on fire activity. Thus, in the absence of large changes to current climatic trends, significant fire regime induced changes in the boreal forest ecosystem are likely.


Sign in / Sign up

Export Citation Format

Share Document