Exercise-Induced Arterial Hypoxemia: Consequences For Locomotor Muscle Fatigue

Author(s):  
Lee M. Romer ◽  
Jerome A. Dempsey ◽  
Andrew Lovering ◽  
Marlowe Eldridge
2006 ◽  
Vol 290 (2) ◽  
pp. R365-R375 ◽  
Author(s):  
Lee M. Romer ◽  
Hans C. Haverkamp ◽  
Andrew T. Lovering ◽  
David F. Pegelow ◽  
Jerome A. Dempsey

The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (V̇o2 peak) = 56.4 ± 2.8 ml·kg−1·min−1; mean ± SE]. Subjects exercised on a cycle ergometer at ≥90% V̇o2 peak to exhaustion (13.2 ± 0.8 min), during which time arterial O2 saturation (SaO2) fell from 97.7 ± 0.1% at rest to 91.9 ± 0.9% (range 84–94%) at end exercise, primarily because of changes in blood pH (7.183 ± 0.017) and body temperature (38.9 ± 0.2°C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (FiO2) = 0.25–0.31] that prevented EIAH (SaO2 = 97–99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz). Immediately after exercise at FiO2 0.21, the mean force response across 1–100 Hz decreased 33 ± 5% compared with only 15 ± 5% when EIAH was prevented ( P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at FiO2 0.21 (SaO2 = 95.3 ± 0.7%), the decrease in evoked force was exacerbated by 35% ( P < 0.05) in response to further desaturation induced via FiO2 0.17 (SaO2 = 87.8 ± 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (−6 ± 1% ΔSaO2 from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.


2004 ◽  
Vol 143 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Jordan A. Guenette ◽  
Tu T. Diep ◽  
Michael S. Koehle ◽  
Glen E. Foster ◽  
Jennifer C. Richards ◽  
...  

2010 ◽  
Vol 178 ◽  
pp. 216-219
Author(s):  
Qing Shan Li ◽  
Ming Shuang Xu

In order to provide scientific proof to anion functional fabrics application research in textile domain, in this article, anion functional fabrics were prepared, the anion generating capacity was determined and the effect of anion fabrics and mice BLA after exercise were first studied. The anion generating capacity shows that: due to the adding of anion function powders to function fabrics, the anion amount released by function fabrics is apparently higher than common fabrics. Washing can not significantly reduce the anion amount of function fabrics releasing. These can indicate that the function fabrics can release anion stable and lasting. The determination of mice’s BLA after swimming showed that Compared to common fabrics, functional fabrics have significant difference (P<0.05). The anions of functional fabrics releasing can reduce animals BLA after exercise and help to eliminate exercise-induced muscle fatigue.


2018 ◽  
Vol 33 (6) ◽  
pp. 1197-1205 ◽  
Author(s):  
Renata Luri Toma ◽  
Murilo Xavier Oliveira ◽  
Ana Cláudia Muniz Renno ◽  
E-Liisa Laakso

2002 ◽  
Vol 93 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Murli Manohar ◽  
Thomas E. Goetz ◽  
Aslam S. Hassan ◽  
Tracy Depuy ◽  
Sarah Humphrey

In view of the suggestion that pulmonary injury-induced release of histamine and/or other chemical mediators from airway inflammatory and mast cells contribute to the exercise-induced arterial hypoxemia (EIAH) in human athletes, we examined the effects of pretreatment with a potent anti-inflammatory agent, dexamethasone, on EIAH and desaturation of hemoglobin in horses. Seven healthy, sound, exercise-trained Thoroughbreds were studied in the control (no medications) experiments, followed in 7 days by intravenous dexamethasone (0.11 mg·kg−1·day−1for 3 consecutive days) studies. Blood-gas measurements were made at rest and during incremental exercise leading to maximal exertion at 14 m/s on a 3.5% uphill grade. Galloping at this workload induced pulmonary hemorrhage in all horses in both treatments, thereby indicating that stress failure of pulmonary capillaries had occurred. In both treatments, significant EIAH, desaturation of hemoglobin, hypercapnia, acidosis, and hyperthermia developed during maximal exercise, but significant differences between the control and dexamethasone treatments were not discerned. The failure of pretreatment with dexamethasone to significantly affect EIAH suggests that pulmonary injury-evoked airway inflammatory response may not play a major role in EIAH in racehorses. However, our observations in both treatments that EIAH developed quickly (being evident at 30 s of exertion) and that its severity remained unaffected by increasing exercise duration (to 120 s) suggest that EIAH has a functional basis, probably related to significant shortening of the transit time for blood in the pulmonary capillaries as cardiac output increases dramatically.


1991 ◽  
Vol 69 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Gisela Sjøgaard

The site of exercise-induced muscle fatigue is suggested to be the muscle membrane, which includes the sarcolemma and T-tubule membrane; the excitability of the membrane is dependent on the membrane potential. Significant potassium flux from the intracellular space of contracting muscle may decrease the membrane potential to half its resting value. This is true for isolated muscle preparations as well as for the whole body exercise in humans. Specific K+ channels have been identified, that may account for the intracellular K+ loss. Calcium-sensitive K+ channels open when intracellular Ca2+ concentrations increase, as during excitation. ATP-sensitive K+ channels may be involved but may open only at ATP concentrations well below those attained at exhaustion. However, ATP may be compartmentalized and only the membrane-bound ATP concentration may be of significance. Ca2+ accumulation and ATP depletion cause cell destruction; these changes induce an increased K+ conductance, which may inactivate the membrane and consequently prevent tension development. It is hypothesized that such a safety mechanism is identical to the fatigue mechanism.Key words: muscle fatigue, electrolyte fluxes, Na+–K+ pump.


2005 ◽  
Vol 99 (1) ◽  
pp. 224-229 ◽  
Author(s):  
Murli Manohar ◽  
Thomas E. Goetz

The present study examined whether Thoroughbred horses performing strenuous exercise exhibit intrapulmonary arteriovenous shunting that may contribute to the observed arterial hypoxemia. Experiments were carried out on seven healthy, exercise-trained Thoroughbreds at rest, maximal exercise (galloping at 14 m/s on a 3.5% uphill grade for 120 s), and submaximal exertion (8 m/s on a 3.5% uphill grade for 150 s). Along with blood gas/hemodynamic parameters, intrapulmonary arteriovenous shunting was studied by injecting 15-μm-diameter microspheres, labeled with different stable isotopes, into the right atrium while simultaneous blood samples were being withdrawn at a constant rate from the pulmonary artery and the aorta. Arterial hypoxemia was observed only during maximal exercise. Also, despite significant pulmonary arterial hypertension during submaximal and maximal exertion, 15-μm microspheres did not traverse the pulmonary microcirculation to appear in the aortic blood. Thus our findings did not support a role for intrapulmonary arteriovenous shunts of >15 μm in diameter in the exercise-induced arterial hypoxemia in racehorses. Interestingly, our observation that, in going from 30 to 120 s of maximal exertion, arterial O2 tension had remained unchanged despite significant reductions in mixed venous blood O2 tension, hemoglobin-O2 saturation, and O2 content also discounts the importance of intrapulmonary arteriovenous shunts in causing arterial hypoxemia. This is because, assuming that a constant fraction of total pulmonary blood flow bypasses the gas-exchange areas of the equine lungs via intrapulmonary arteriovenous shunts during 30–120 s of maximal exertion, the observed significant reductions in mixed venous blood oxygenation should cause a significant reduction in arterial O2 tension, which was not the case in our horses. Thus it is suggested that intrapulmonary arteriovenous shunting probably does not contribute to the exercise-induced arterial hypoxemia in racehorses.


2004 ◽  
Vol 96 (4) ◽  
pp. 1349-1356 ◽  
Author(s):  
Murli Manohar ◽  
Thomas E. Goetz ◽  
Aslam S. Hassan

The objective of the present study was to examine the effects of preexercise NaHCO3 administration to induce metabolic alkalosis on the arterial oxygenation in racehorses performing maximal exercise. Two sets of experiments, intravenous physiological saline and NaHCO3 (250 mg/kg iv), were carried out on 13 healthy, sound Thoroughbred horses in random order, 7 days apart. Blood-gas variables were examined at rest and during incremental exercise, leading to 120 s of galloping at 14 m/s on a 3.5% uphill grade, which elicited maximal heart rate and induced pulmonary hemorrhage in all horses in both treatments. NaHCO3 administration caused alkalosis and hemodilution in standing horses, but arterial O2 tension and hemoglobin-O2 saturation were unaffected. Thus NaHCO3 administration caused a reduction in arterial O2 content at rest, although the arterial-to-mixed venous blood O2 content gradient was unaffected. During maximal exercise in both treatments, arterial hypoxemia, desaturation, hypercapnia, acidosis, hyperthermia, and hemoconcentration developed. Although the extent of exercise-induced arterial hypoxemia was similar, there was an attenuation of the desaturation of arterial hemoglobin in the NaHCO3-treated horses, which had higher arterial pH. Despite these observations, the arterial blood O2 content of exercising horses was less in the NaHCO3 experiments because of the hemodilution, and an attenuation of the exercise-induced expansion of the arterial-to-mixed venous blood O2 content gradient was observed. It was concluded that preexercise NaHCO3 administration does not affect the development and/or severity of arterial hypoxemia in Thoroughbreds performing short-term, high-intensity exercise.


Sign in / Sign up

Export Citation Format

Share Document