Inter-enterprise collaborative design and manufacturing via WWW/Internet

Author(s):  
Z. Deng ◽  
B. Bang ◽  
B. Solvang
2012 ◽  
Vol 522 ◽  
pp. 319-322
Author(s):  
Chen Wang ◽  
Hong Xia Cai ◽  
Kang Ding ◽  
Tao Yu

The collaborative design and manufacturing is applied in the aircraft industry. This paper introduces the collaborative design and manufacturing mode in aircraft industry and presents its structural framework. The data is managed in the structure of BOM and there are two ways to share the data between the suppliers. The collaborative design and manufacturing process reflects the concept of concurrent engineering. The collaborative design and manufacturing system has been applied in the project of C919 which could sharply shorten the research cycle and reduce the product cost.


Author(s):  
Mohammed Elsouri ◽  
James Gao ◽  
Clive Simmonds ◽  
Nick Martin

Defects generated by the UK supply chain is much higher than its global competitors. Defects impact costs and production throughput due to unpredictable disruptions resulting in many non-value adding activities. However, defects data associated knowledge have rarely been considered and implemented as the manufacturing capability in existing design for manufacturing and assembly (DFMA) data/knowledge bases. On the other hand, current ICT systems used in the aerospace industry are not flexible enough to keep up with the new requirements of collaborating to manage knowledge properly, and the use of real-time manufacturing data generated in manufacturing activities. This research was carried out in collaboration with one of the UK’s largest aerospace companies in order to analyse the complexity of design and manufacturing activities of high-value safety-critical aerospace products. The results of the work are presented, and a novel approach and system was developed, that can be used to support DFMA using defects knowledge. The approach was implemented as a knowledge management system using collaborative design principles. Key findings from the main contribution in the context of extended enterprises of high value low volume safety critical product manufacturing are discussed.


2011 ◽  
Vol 88-89 ◽  
pp. 576-582
Author(s):  
Shao Chao Liu ◽  
Guang Rong Yan

This paper introduces the division methods of aircraft research phases in foreign aviation enterprises, gives a general division method of aircraft research phases in our country and introduces the main task of each phase. Besides,it introduces the general content of collaborative design and manufacturing in research flowchart for large aircraft.


2008 ◽  
Vol 22 (3) ◽  
pp. 281 ◽  
Author(s):  
Weiming Shen ◽  
Jean-Paul A. Barthès

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kun Shang

An electric motor driven by the electromechanical system of the Internet of Things is attractive because of its long life capability of the propulsion system. In this paper, the application of collaborative design and manufacturing in the design automation of IOT electromechanical system is reviewed, and the application of collaborative design and manufacturing in robots, a typical IOT electromechanical system, is described in detail. In this paper, we explain five aspects including the construction of a multiangle unified modeling method for the electromechanical system of the Internet of Things; the constraint processing mechanism for the optimization problem of the electromechanical system of the Internet of Things; the constraint multiobjective optimization methods; design methods that integrate constraint multipurpose evolutionary algorithms and knowledge extraction; and design automation of visual perception systems for electromechanical systems based on the Internet of Things and deep neural networks. The research shows that under the control of a conventional radial basis function neural network controller and the control of a radial basis function neural network controller based on the electromechanical system of the Internet of Things, the system will be affected to a certain extent when there is interference. Under the control of a traditional RBF neural network controller, the system requires 0.18 seconds to restore stability. When using the RBF neural network controller based on the electromechanical system of the Internet of Things, the system returns to a stable state after 0.09 s, and the peak time is reduced by 59% compared with the conventional RBF neural network controller.


Sign in / Sign up

Export Citation Format

Share Document