Research on Collaborative Design and Manufacturing for Civil Aircraft

2012 ◽  
Vol 522 ◽  
pp. 319-322
Author(s):  
Chen Wang ◽  
Hong Xia Cai ◽  
Kang Ding ◽  
Tao Yu

The collaborative design and manufacturing is applied in the aircraft industry. This paper introduces the collaborative design and manufacturing mode in aircraft industry and presents its structural framework. The data is managed in the structure of BOM and there are two ways to share the data between the suppliers. The collaborative design and manufacturing process reflects the concept of concurrent engineering. The collaborative design and manufacturing system has been applied in the project of C919 which could sharply shorten the research cycle and reduce the product cost.

2012 ◽  
Vol 157-158 ◽  
pp. 171-174 ◽  
Author(s):  
Hui Fen Wang ◽  
Feng Qiang Nan ◽  
Ting Ting Liu

According to the requirement of collaborative product development, a networked collaborative design and manufacturing system is put forward. A neuter digital assembly model which is independent from all kinds of the commercial CAD software is set up. The quick planning of the assembly sequences and the automatic search of the assembly dimension chain can be realized by the simulation.


2018 ◽  
Author(s):  
Pablo M. N. Araujo ◽  
Thiago R. Costa ◽  
Eduardo C. Silva

Author(s):  
R. Ascione ◽  
W. Polini ◽  
Q. Semeraro

Many well-known approaches exist in the literature for tolerance analysis. All the methods proposed in the literature consider the dimensional and the geometric tolerances applied to some critical points (contact points among profiles belonging to couples of parts) on the surface of the assembly components. These points are generally considered uncorrelated since the nominal surface is considered. Therefore, the methods proposed in the literature do not consider the actual surface due to a manufacturing process. Every manufacturing process leaves on the surface a signature, i.e., a systematic pattern that characterizes all the features machined with that process. The aim of the present work is to investigate the effects of considering the manufacturing signature in solving a tolerance stack-up function. A case study involving three parts has been defined and solved by means of a method of the literature, the variational method, with and without considering the correlation among the points of the same surface due to the manufacturing signature. This work represents a first step toward the integration of the design and the manufacturing in a concurrent engineering approach.


2021 ◽  
Author(s):  
Douglas L. Van Bossuyt ◽  
Ryan M. Arlitt

Abstract We introduce a method to help protect against and mitigate possible consequences of major regional and global events that can disrupt a system design and manufacturing process. The method is intended to be used during the conceptual phase of system design when functional models have been developed and component solutions are being chosen. Disruptive events such as plane crashes killing many engineers from one company traveling together, disease outbreaks killing or temporarily disabling many people associated with one industrial sector who travel to the same conference regularly, geopolitical events that impose tariffs or complete cessation of trade with a country that supplies a critical component, and many other similar physical and virtual events can significantly delay or disrupt a system design process. By comparing alternative embodiment, component, and low-level functional solutions, solutions can be identified that better pass the bus factor where no one disruptive event will cause a major delay or disruption to a system design and manufacturing process. We present a simplified case study of a renewable energy generation and storage system intended for residential use to demonstrate the method. While some challenges to immediate adoption by practitioners exist, we believe the method has the potential to significantly improve system design processes so that systems are designed, manufactured, and delivered on schedule and on budget from the perspective of significant disruptive events to design and manufacturing.


Sign in / Sign up

Export Citation Format

Share Document