Recent progress in relaxor ferroelectrics with perovskite structure

2007 ◽  
pp. 31-52 ◽  
Author(s):  
A. A. Bokov ◽  
Z. -G. Ye
2005 ◽  
Vol 134 (6) ◽  
pp. 425-429 ◽  
Author(s):  
Ni Zhong ◽  
Wen-long Yao ◽  
Ping-hua Xiang ◽  
Chu-de Feng ◽  
Seiji Kojima

2020 ◽  
Vol 65 (10) ◽  
pp. 916-930 ◽  
Author(s):  
Zhengyin Jing ◽  
Yu’an Xiong ◽  
Jie Yao ◽  
Qiang Pan ◽  
Guowei Du ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Zenghui Liu ◽  
Hua Wu ◽  
Jian Zhuang ◽  
Gang Niu ◽  
Nan Zhang ◽  
...  

Piezo-/ferroelectrics are essential materials for electromechanical sensors and actuators and energy harvesters in a wide range of technological applications. The demand for piezo-/ferroelectric materials with high Curie temperature (TC) arises...


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Dawn A. Bonnell ◽  
Yong Liang

Recent progress in the application of scanning tunneling microscopy (STM) and tunneling spectroscopy (STS) to oxide surfaces has allowed issues of image formation mechanism and spatial resolution limitations to be addressed. As the STM analyses of oxide surfaces continues, it is becoming clear that the geometric and electronic structures of these surfaces are intrinsically complex. Since STM requires conductivity, the oxides in question are transition metal oxides that accommodate aliovalent dopants or nonstoichiometry to produce mobile carriers. To date, considerable effort has been directed toward probing the structures and reactivities of ZnO polar and nonpolar surfaces, TiO2 (110) and (001) surfaces and the SrTiO3 (001) surface, with a view towards integrating these results with the vast amount of previous surface analysis (LEED and photoemission) to build a more complete understanding of these surfaces. However, the spatial localization of the STM/STS provides a level of detail that leads to conclusions somewhat different from those made earlier.


Author(s):  
T. Egami ◽  
H. D. Rosenfeld ◽  
S. Teslic

Relaxor ferroelectrics, such as Pb(Mg1/3Nb2/3)O3 (PMN) or (Pb·88La ·12)(Zr·65Ti·35)O3 (PLZT), show diffuse ferroelectric transition which depends upon frequency of the a.c. field. In spite of their wide use in various applications details of their atomic structure and the mechanism of relaxor ferroelectric transition are not sufficiently understood. While their crystallographic structure is cubic perovskite, ABO3, their thermal factors (apparent amplitude of thermal vibration) is quite large, suggesting local displacive disorder due to heterovalent ion mixing. Electron microscopy suggests nano-scale structural as well as chemical inhomogeneity.We have studied the atomic structure of these solids by pulsed neutron scattering using the atomic pair-distribution analysis. The measurements were made at the Intense Pulsed Neutron Source (IPNS) of Argonne National Laboratory. Pulsed neutrons are produced by a pulsed proton beam accelerated to 750 MeV hitting a uranium target at a rate of 30 Hz. Even after moderation by a liquid methane moderator high flux of epithermal neutrons with energies ranging up to few eV’s remain.


Sign in / Sign up

Export Citation Format

Share Document