Role of CRMP-2 in Neuronal Polarization

Author(s):  
Nariko Arimura ◽  
Takeshi oshimura ◽  
Kozo Kaibuchi
2008 ◽  
Vol 319 (2) ◽  
pp. 502
Author(s):  
Shailesh K. Gupta ◽  
Rashmi Mishra ◽  
David Juncker ◽  
Karina F. Meiri ◽  
Shyamala Mani

2011 ◽  
Vol 71 (6) ◽  
pp. 445-457 ◽  
Author(s):  
Takashi Namba ◽  
Shinichi Nakamuta ◽  
Yasuhiro Funahashi ◽  
Kozo Kaibuchi

2020 ◽  
Author(s):  
Manu Goyal ◽  
Xiyan Zhao ◽  
Mariya Bozhinova ◽  
Karla Lisette Andrade López ◽  
Cecilia de Heus ◽  
...  

ABSTRACTCoat protein complex I (COPI)-coated vesicles mediate membrane trafficking between Golgi cisternae as well as retrieval of proteins from the Golgi to the endoplasmic reticulum. There are several flavors of the COPI coat defined by paralogous subunits of the protein complex coatomer. However, whether paralogous COPI proteins have specific functions is currently unknown. Here we show that the paralogous coatomer subunits γ1-COP and γ2-COP are differentially expressed during the neuronal differentiation of mouse pluripotent cells. Moreover, through a combination of genome editing experiments, we demonstrate that whereas γ-COP paralogs are largely functionally redundant, γ1-COP specifically promotes neurite outgrowth. Our work stresses a role of the COPI pathway in neuronal polarization and provides evidence for distinct functions for coatomer paralogous subunits in this process.


2012 ◽  
Vol 53 ◽  
pp. 55-68 ◽  
Author(s):  
Giovanna Lalli

Cell polarization is critical for the correct functioning of many cell types, creating functional and morphological asymmetry in response to intrinsic and extrinsic cues. Neurons are a classical example of polarized cells, as they usually extend one long axon and short branched dendrites. The formation of such distinct cellular compartments (also known as neuronal polarization) ensures the proper development and physiology of the nervous system and is controlled by a complex set of signalling pathways able to integrate multiple polarity cues. Because polarization is at the basis of neuronal development, investigating the mechanisms responsible for this process is fundamental not only to understand how the nervous system develops, but also to devise therapeutic strategies for neuroregeneration. The last two decades have seen remarkable progress in understanding the molecular mechanisms responsible for mammalian neuronal polarization, primarily using cultures of rodent hippocampal neurons. More recent efforts have started to explore the role of such mechanisms in vivo. It has become clear that neuronal polarization relies on signalling networks and feedback mechanisms co-ordinating the actin and microtubule cytoskeleton and membrane traffic. The present chapter will highlight the role of key molecules involved in neuronal polarization, such as regulators of the actin/microtubule cytoskeleton and membrane traffic, polarity complexes and small GTPases.


2008 ◽  
Vol 18 (5) ◽  
pp. 479-487 ◽  
Author(s):  
Harald Witte ◽  
Frank Bradke

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuan Xie ◽  
Shaogang Wang ◽  
Mingyi Li ◽  
Lei Diao ◽  
Xingyu Pan ◽  
...  

AbstractTri-methylation on lysine 40 of α-tubulin (α-TubK40me3) is a recently identified post-translational modification involved in mitosis and cytokinesis. However, knowledge about α-TubK40me3 in microtubule function and post-mitotic cells remains largely incomplete. Here, we report that α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. α-TubK40me3 is enriched in mouse cerebral cortex during embryonic day (E)14 to E16. Knockdown of α-tubulin methyltransferase SETD2 at E14 leads to the defects in neuronal migration, which could be restored by overexpressing either a cytoplasm-localized SETD2 truncation or α-TubK40me3-mimicking mutant. Furthermore, α-TubK40me3 is preferably distributed on polymerized microtubules and potently promotes tubulin nucleation. Downregulation of α-TubK40me3 results in reduced microtubule abundance in neurites and disrupts neuronal polarization, which could be rescued by Taxol. Additionally, α-TubK40me3 is increased after losing α-tubulin K40 acetylation (α-TubK40ac) and largely rescues α-TubK40ac function. This study reveals a critical role of α-TubK40me3 in microtubule formation and neuronal development.


2011 ◽  
Vol 71 (6) ◽  
pp. 508-527 ◽  
Author(s):  
Maya Shelly ◽  
Mu-Ming Poo

2020 ◽  
Vol 3 (9) ◽  
pp. e202000714
Author(s):  
Manu Jain Goyal ◽  
Xiyan Zhao ◽  
Mariya Bozhinova ◽  
Karla Andrade-López ◽  
Cecilia de Heus ◽  
...  

Coat protein complex I (COPI)–coated vesicles mediate membrane trafficking between Golgi cisternae as well as retrieval of proteins from the Golgi to the endoplasmic reticulum. There are several flavors of the COPI coat defined by paralogous subunits of the protein complex coatomer. However, whether paralogous COPI proteins have specific functions is currently unknown. Here, we show that the paralogous coatomer subunits γ1-COP and γ2-COP are differentially expressed during the neuronal differentiation of mouse pluripotent cells. Moreover, through a combination of genome editing experiments, we demonstrate that whereas γ-COP paralogs are largely functionally redundant, γ1-COP specifically promotes neurite outgrowth. Our work stresses a role of the COPI pathway in neuronal polarization and provides evidence for distinct functions for coatomer paralogous subunits in this process.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document