Gradient Echo Sequences and 3D Imaging

Breast MRI ◽  
2008 ◽  
pp. 59-73
Keyword(s):  
2020 ◽  
Vol 28 ◽  
pp. 102449
Author(s):  
Erik H. Middlebrooks ◽  
Chen Lin ◽  
Erin Westerhold ◽  
Lela Okromelidze ◽  
Prasanna Vibhute ◽  
...  

Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


1996 ◽  
Vol 35 (05) ◽  
pp. 146-152 ◽  
Author(s):  
A. Kögler ◽  
H.-A. Schmitt ◽  
D. Emrich ◽  
H. Kreuzer ◽  
D. L. Munz ◽  
...  

SummaryThis prospective study assessed myocardial viability in 30 patients with coronary heart disease and persistent defects despite reinjection on TI-201 single-photon computed tomography (SPECT). In each patient, three observers graded TI-201 uptake in 7 left ventricular wall segments. Gradient-echo magnetic resonance imaging in the region of the persistent defect generated 12 to 16 short axis views representing a cardiac cycle. A total of 120 segments were analyzed. Mean end-diastolic wall thickness and systolic wall thickening (± SD) was 11.5 ± 2.7 mm and 5.8 ± 3.9 mm in 48 segments with normal TI-201 uptake, 10.1 ± 3.4 mm and 3.7 ± 3.1 mm in 31 with reversible lesions, 11.3 ± 2.8 mm and 3.3 ± 1.9 mm in 10 with mild persistent defects, 9.2 ± 2.9 mm and 3.2 ±2.2 mm in 15 with moderate persistent defects, 5.8 ± 1.7 mm and 1.3 ± 1.4 mm in 16 with severe persistent defects, respectively. Significant differences in mean end-diastolic wall thickness (p <0.0005) and systolic wall thickening (p <0.005) were found only between segments with severe persistent defects and all other groups, but not among the other groups. On follow-up in 11 patients after revascularization, 6 segments with mild-to-moderate persistent defects showed improvement in mean systolic wall thickening that was not seen in 6 other segments with severe persistent defects. These data indicate that most myocardial segments with mild and moderate persistent TI-201 defects after reinjection still contain viable tissue. Segments with severe persistent defects, however, represent predominantly nonviable myocardium without contractile function.


Author(s):  
EA Rodegerdts ◽  
A Boss ◽  
K Riemarzik ◽  
M Lichy ◽  
F Schick ◽  
...  
Keyword(s):  
3 Tesla ◽  

2018 ◽  
Vol 2018 (1) ◽  
pp. 151-156
Author(s):  
Scott Geffert ◽  
Daniel Hausdorf ◽  
Joseph Coscia ◽  
Oi-Cheong Lee ◽  
Dahee Han ◽  
...  

Author(s):  
Deepak Goyal

Abstract Next generation assembly/package development challenges are primarily increased interconnect complexity and density with ever shorter development time. The results of this trend present some distinct challenges for the analytical tools/techniques to support this technical roadmap. The key challenge in the analytical tools/techniques is the development of non-destructive imaging for improved time to information. This paper will present the key drivers for the non-destructive imaging, results of literature search and evaluation of key analytical techniques currently available. Based on these studies requirements of a 3D imaging capability will be discussed. Critical breakthroughs required for development of such a capability are also summarized.


Sign in / Sign up

Export Citation Format

Share Document