The forecasting implications of telecommunications cost models

Author(s):  
Timothy J. Tardiff
Keyword(s):  
1988 ◽  
Vol 6 (1) ◽  
pp. 35-48
Author(s):  
Greg M. Thibadoux ◽  
Nicholas Apostolou ◽  
Ira S. Greenberg

2006 ◽  
Vol 33 (8) ◽  
pp. 1065-1074 ◽  
Author(s):  
Tarek M Zayed ◽  
Ibrahim A Nosair

Assessing productivity, cost, and delays are essential to manage any construction operation, particularly the concrete batch plant (CBP) operation. This paper focuses on assessing the above-mentioned items for the CBP using stochastic mathematical models. It aims at (i) identifying the potential sources of delay in the CBP operation; (ii) assessing their influence on production, efficiency, time, and cost; and (iii) determining each factor share in inflating the CBP concrete unit expense. Stochastic mathematical models were designed to accomplish the aforementioned objectives. Data were collected from five CBP sites in Indiana, USA, to implement and verify the designed models. Results show that delays due to management conditions have the highest probability of occurrence (0.43), expected value of delay percent (62.54% out of total delays), and relative delay percent. The expected value of efficiency for all plants is 86.53%; however, the average total expense is US$15.56/m3 (all currency are in US$). In addition, the expected value of effective expenses (EE) is $18.03/m3, resulting in extra expenses (XE) of $2.47/m3. This research is relevant to both industry practitioners and researchers. It develops models to determine the effect of delays on concrete unit cost. They are also beneficial to the CBP management.Key words: concrete batch plant, delays, management conditions, cost models, cost management, stochastic mathematical models.


2017 ◽  
Vol 7 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Wenjie Dong ◽  
Sifeng Liu ◽  
Zhigeng Fang ◽  
Xiaoyu Yang ◽  
Qian Hu ◽  
...  

Purpose The purpose of this paper is to clarify several commonly used quality cost models based on Juran’s characteristic curve. Through mathematical deduction, the lowest point of quality cost and the lowest level of quality level (often depicted by qualification rate) can be obtained. This paper also aims to introduce a new prediction model, namely discrete grey model (DGM), to forecast the changing trend of quality cost. Design/methodology/approach This paper comes to the conclusion by means of mathematical deduction. To make it more clear, the authors get the lowest quality level and the lowest quality cost by taking the derivative of the equation of quality cost and quality level. By introducing the weakening buffer operator, the authors can significantly improve the prediction accuracy of DGM. Findings This paper demonstrates that DGM can be used to forecast quality cost based on Juran’s cost characteristic curve, especially when the authors do not have much information or the sample capacity is rather small. When operated by practical weakening buffer operator, the randomness of time series can be obviously weakened and the prediction accuracy can be significantly improved. Practical implications This paper uses a real case from a literature to verify the validity of discrete grey forecasting model, getting the conclusion that there is a certain degree of feasibility and rationality of DGM to forecast the variation tendency of quality cost. Originality/value This paper perfects the theory of quality cost based on Juran’s characteristic curve and expands the scope of application of grey system theory.


Sign in / Sign up

Export Citation Format

Share Document