Visualization of Chromatin Dynamics by Live Cell Microscopy Using CRISPR/Cas9 Gene Editing and ANCHOR Labeling

Author(s):  
Ezio T. Fok ◽  
Stephanie Fanucchi ◽  
Kerstin Bystricky ◽  
Musa M. Mhlanga
2004 ◽  
Vol 87 (6) ◽  
pp. 4146-4152 ◽  
Author(s):  
Hilmar Gugel ◽  
Jörg Bewersdorf ◽  
Stefan Jakobs ◽  
Johann Engelhardt ◽  
Rafael Storz ◽  
...  

2009 ◽  
Vol 122 (6) ◽  
pp. 753-767 ◽  
Author(s):  
M. M. Frigault ◽  
J. Lacoste ◽  
J. L. Swift ◽  
C. M. Brown

Biochemistry ◽  
2018 ◽  
Vol 57 (39) ◽  
pp. 5648-5653 ◽  
Author(s):  
Alison G. Tebo ◽  
Frederico M. Pimenta ◽  
Yu Zhang ◽  
Arnaud Gautier

2021 ◽  
Vol 17 (8) ◽  
pp. 1647-1653
Author(s):  
Ke Yang ◽  
Yuanyuan Wang ◽  
Bo Sun ◽  
Tian Tian ◽  
Zhu Dai ◽  
...  

MicroRNA (miRNA) has emerged as an important gene-regulator that shows great potential in gene therapy because of its unique roles in gene-regulation. However, the knowledge on their function and transportation in vivo is still lacking, and there are limited obvious evidences to define intracellular transportation of miRNA. In this study, the dynamics of exogenous miR-21 transfected into HeLa cells was traced by live-cell microscopy. Their transportation at key time points was recorded and dynamic properties were analyzed by single particle tracking (SPT) and mean square displacement (MSD) calculation. Results showed that the exogenous miRNAs bounded to cells quickly and went through lysosome into cytosol, where they were subsequently recruited into p-body. They finally were degraded, otherwise went back to cytosol in some way. Long time observation and analysis of motion mode showed that the miRNAs were confined in a small region and their motion modes were flexible in different intracellular microenvironment after entering the cells.


Author(s):  
Herbert Schneckenburger ◽  
Verena Richter ◽  
Michael Wagner ◽  
Mathis Piper

2020 ◽  
Vol 31 (18) ◽  
pp. 2021-2034 ◽  
Author(s):  
Karen W. Cheng ◽  
R. Dyche Mullins

Clustering of the actin polymerase VASP (vasodilator-stimulated phosphoprotein) reorganizes leading-edge actin filaments into filopodia bundles in crawling cells. Here, we use live-cell microscopy to image the earliest events in VASP clustering and find that initiation depends on interactions with lamellipodin and barbed ends, while disassembly is driven by size-dependent instability.


2004 ◽  
Vol 78 (20) ◽  
pp. 11411-11415 ◽  
Author(s):  
Roger D. Everett ◽  
Alexandros Zafiropoulos

ABSTRACT ND10 structures are disrupted during herpes simplex virus type 1 (HSV-1) infection by viral regulatory protein ICP0. The significance of this effect remains controversial, partly because of a report that high-level expression of the major ND10 promyelocytic leukemia (PML) protein precludes ND10 disruption yet does not inhibit HSV-1 infection. Here we demonstrate dramatic reorganization of ND10 during HSV-1 infection by live-cell microscopy, even in the presence of overexpressed PML.


Sign in / Sign up

Export Citation Format

Share Document