Analysis of and Intracellular Trafficking of Boric Acid/Borate Transport Proteins in Arabidopsis

Author(s):  
Akira Yoshinari ◽  
Junpei Takano
2020 ◽  
Vol 16 (4) ◽  
pp. 467-472
Author(s):  
Nurul Syeefa Zulkiflee ◽  
Siti Amilia Awang ◽  
Woo Xian Ming ◽  
Muhammad Fauzan Wira’i Kamilan ◽  
M Yuveneshwari Mariappan ◽  
...  

Background: Vitamin E is comprised of α, β, γ and δ-tocopherols (Ts) and α, β, γ and δ- tocotrienols (T3s). Vitamin E has neuroprotective antioxidant, anti-cancer, and cholesterol-lowering effects. Intracellular trafficking of these isomers remains largely unknown, except for αT which is selectively transported by αT transfer protein (αTTP). Objective: This study aimed to determine the binding of vitamin E isomers on transport proteins using in silico docking. Methods: Transport proteins were selected using AmiGo Gene Ontology tool based on the same molecular function annotation as αTTP. Protein structures were obtained from the Protein Data Bank. Ligands structures were obtained from ZINC database. In silico docking was performed using SwissDock. Results and Discussion: A total of 6 transport proteins were found: SEC14-like protein 2, glycolipid transfer protein (GLTP), pleckstrin homology domain-containing family A member 8, collagen type IV alpha-3-binding protein, ceramide-1-phosphate transfer protein and afamin. Compared with other transport proteins, αTTP had the highest affinities for all isomers except βT3. Binding order of vitamin E isomers toward αTTP was γT > βT > αT > δT > αT3 > γT3 > δT3 > βT3. GLTP had a higher affinity for tocotrienols than tocopherols. βT3 bound stronger to GLTP than αTTP. Conclusion: αTTP remained as the most preferred transport protein for most of the isomers. The binding affinity of αT toward αTTP was not the highest than other isomers suggested that other intracellular trafficking mechanisms of these isomers may exist. GLTP may mediate the intracellular transport of tocotrienols, especially βT3. Improving the bioavailability of these isomers may enhance their beneficial effects to human.


Author(s):  
G. Zampighi ◽  
M. Kreman

The plasma membranes of most animal cells contain transport proteins which function to provide passageways for the transported species across essentially impermeable lipid bilayers. The channel is a passive transport system which allows the movement of ions and low molecular weight molecules along their concentration gradients. The pump is an active transport system and can translocate cations against their natural concentration gradients. The actions and interplay of these two kinds of transport proteins control crucial cell functions such as active transport, excitability and cell communication. In this paper, we will describe and compare several features of the molecular organization of pumps and channels. As an example of an active transport system, we will discuss the structure of the sodium and potassium ion-activated triphosphatase [(Na+ +K+)-ATPase] and as an example of a passive transport system, the communicating channel of gap junctions and lens junctions.


1889 ◽  
Vol 27 (690supp) ◽  
pp. 11021-11021
Keyword(s):  

2012 ◽  
Vol 4 (2) ◽  
pp. 11
Author(s):  
Saibatul Hamdi

This research used the lesser known species as much 5 types rattan, consisted of i.e marau (Calamus Mettanensis Becc), toho (Calamus Spp), galang (Daemonorops Verticilaris Griff Mart), hijau (Calamus Spp) and simpurut (Calamus Panajuga Becc) from Central Kalimantan. Preservative used the mixture of boric acid with the borax and copper-8 by  the concentration of 1,0 %, 2,0 % and 3,0 %. Soaked time during 2 day, 4 day and 6 day by immersion chilled. Result of research indicated that the retention value varied, the greater of concentration condensation and soaking period, the greater average the value of retention while penetration result at all of treatment showed the value 100 %.Keywords:  rattan, preservation, retention, penetration, cold soaking.


Sign in / Sign up

Export Citation Format

Share Document