Precision Medicine and Dilated Cardiomyopathy

Author(s):  
Xiang Li ◽  
Wenyan Zhu
2019 ◽  
Vol 74 (23) ◽  
pp. 2921-2938 ◽  
Author(s):  
Diane Fatkin ◽  
Inken G. Huttner ◽  
Jason C. Kovacic ◽  
J.G. Seidman ◽  
Christine E. Seidman

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Lina Greenberg ◽  
W. Tom Stump ◽  
Andrea L Bredemeyer ◽  
Kory J Lavine ◽  
Michael J Greenberg

Familial dilated cardiomyopathy (DCM) is a leading cause of both adult and pediatric heart failure. Currently, there is no cure for DCM, and the 5-year transplant free survival rate is <50%. There is therefore an outstanding need to develop new therapeutics. Prior studies have established a strong genetic basis for DCM and identified causative genetic mutations. These observations provide unique opportunities to apply precision medicine approaches that target and circumvent the effects of deleterious mutations. Here, we used a multiscale approach to study the consequences of a human mutation in troponin T that causes DCM, ΔK210. We found that at the molecular scale ΔK210 changes the positioning of tropomyosin along the thin filament, leading to molecular hypocontractility. Using genome edited human stem cell derived cardiomyocytes heterozygous for the mutation, we show reduced cellular contractility at the single cell and tissue levels. Importantly, we demonstrate that mutant tissues show a reduced Frank-Starling response, increased stiffness, and misaligned myocytes. Based on our molecular mechanism, we hypothesized that treatment of ΔK210 with Omecamtiv Mecarbil (OM), a thin filament activator in clinical trials for heart failure, would improve the function of mutant tissues. We found that treatment of ΔK210 molecular complexes and tissues with OM causes a dose-dependent increase in cardiac function, reversing the mutation-induced contractile defect. Taken together, our study demonstrates how mechanistic molecular studies can be harnessed to identify precision medicine therapeutics.


Author(s):  
Xia Mingyu ◽  
Ma Wengshu ◽  
Wu Xiangh ◽  
Chen Dong

This paper describes morphological and cytochemistry changes of endomyocardial biopsy in 94 patients. The samples of myoicardium were taken from 32 patients with dilated cardiomyopathy, and sdudied with light and electron microscop. The cytochemical studies in some of these patients were performed at histological and ultrastructure level. This paper also reported the result of myocardial biopsy in 33 patients with serious dysrythmia.The result of this controlled study indicates that morphological assessment in both cardiomyopathy and congenital or rheumatic heart diseases showed no special changes. In patients of dilated cardiomyopathy, the decreased activity of myosin ATPase was secondary to cardial failure. The change of succinate dehydrogenase (SDHase) was not significant with light microscopy. But ultrastructural localization of SDHase activity is valuable. Its activity was found to be localized in endomembrane and ridge of the mitochondria, the activity of this enzyme was decrease, normal, or increase. SDHase activity was more intense in cardial myocytes well-functioning, or ultrastructurally well preserved hearts.


Sign in / Sign up

Export Citation Format

Share Document