Mammalian Cell Fusion Assays for the Study of Cell Cycle Progression by Functional Complementation

Author(s):  
Jongkuen Lee ◽  
David Dominguez-Sola
2005 ◽  
Vol 25 (23) ◽  
pp. 10205-10219 ◽  
Author(s):  
Luke F. Peterson ◽  
Anita Boyapati ◽  
Velvizhi Ranganathan ◽  
Atsushi Iwama ◽  
Daniel G. Tenen ◽  
...  

ABSTRACT The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFβ for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 1851-1875 ◽  
Author(s):  
Rasika N. Jinadasa ◽  
Stephen E. Bloom ◽  
Robert S. Weiss ◽  
Gerald E. Duhamel

Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.


2011 ◽  
Vol 283 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Anuradha Chauhan ◽  
Stephan Lorenzen ◽  
Hanspeter Herzel ◽  
Samuel Bernard

Sign in / Sign up

Export Citation Format

Share Document