Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach

Author(s):  
Donald P. Cameron ◽  
Vladislav Kuzin ◽  
Laura Baranello
Keyword(s):  
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 564
Author(s):  
Haruki Watanabe ◽  
Myoungsun Son

The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE’s roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.


Chromosoma ◽  
2021 ◽  
Author(s):  
Philipp A. Steffen ◽  
Christina Altmutter ◽  
Eva Dworschak ◽  
Sini Junttila ◽  
Attila Gyenesei ◽  
...  

AbstractThe Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.


2021 ◽  
Vol 567 ◽  
pp. 208-214
Author(s):  
Dong-Kyu Kim ◽  
Christophe E. Redon ◽  
Mirit I. Aladjem ◽  
Hyong Kyu Kim ◽  
Sang-Min Jang

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Dharmendra Dingar ◽  
William B. Tu ◽  
Diana Resetca ◽  
Corey Lourenco ◽  
Aaliya Tamachi ◽  
...  

2012 ◽  
Vol 442 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Sagar Darvekar ◽  
Sylvia Sagen Johnsen ◽  
Agnete Bratsberg Eriksen ◽  
Terje Johansen ◽  
Eva Sjøttem

Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551–1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551–1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551–1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith–Magenis syndrome and Potocki–Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions.


Sign in / Sign up

Export Citation Format

Share Document