Efficient and Precise Protein Synthesis in a Cell-Free System Using a Set of In Vitro Transcribed with

Author(s):  
Kazuaki Amikura ◽  
Keita Hibi ◽  
Yoshihiro Shimizu
1976 ◽  
Vol 25 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Richard L. Momparler ◽  
Stuart Siegel ◽  
Felicidad Avila ◽  
Thomas Lee ◽  
Myron Karon

1976 ◽  
Vol 31 (3-4) ◽  
pp. 169-173 ◽  
Author(s):  
Bernd Schulz-Harder ◽  
Ernst-Randolf Lochmann

Abstract A method to prepare polyribosomes from yeasts by using the french-press is described. The highest yield of polyribosomes was derived from late log-phase cells. These polyribosomes, incubated in a cell-free system, were able to reinitiate protein synthesis, which was shown by inhibiting aminoacid incorporation by aurintricarboxylic acid, edeine and sodiumfluoride. We developed the translational system in order to look for the optimal ion-conditions of a DNA-dependent protein-synthesizing system. We found out that at the optimal MgCL2-concentration (6 mᴍ) protein synthesis was strongly inhibited by Mangan ions which are required for transcription in yeast. If protein-synthesis was carried out with 2 mᴍ and 3 mᴍ MgCl2 maximal aminoacid incorporation was observed at 2 mᴍ and 1.5 mᴍ MnCl2.


BioTech ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 24
Author(s):  
Marina Snapyan ◽  
Sylvain Robin ◽  
Garabet Yeretssian ◽  
Michèle Lecocq ◽  
Frédéric Marc ◽  
...  

We have evaluated several approaches to increase protein synthesis in a cell-free coupled bacterial transcription and translation system. A strong pargC promoter, originally isolated from a moderate thermophilic bacterium Geobacillus stearothermophilus, was used to improve the performance of a cell-free system in extracts of Escherichia coli BL21 (DE3). A stimulating effect on protein synthesis was detected with extracts prepared from recombinant cells, in which the E. coli RNA polymerase subunits α, β, β’ and ω are simultaneously coexpressed. Appending a 3′ UTR genomic sequence and a T7 transcription terminator to the protein-coding region also improves the synthetic activity of some genes from linear DNA. The E. coli BL21 (DE3) rna::Tn10 mutant deficient in a periplasmic RNase I was constructed. The mutant cell-free extract increases by up to four-fold the expression of bacterial and human genes mediated from both bacterial pargC and phage pT7 promoters. By contrast, the RNase E deficiency does not affect the cell-free expression of the same genes. The regulatory proteins of the extremophilic bacterium Thermotoga, synthesized in a cell-free system, can provide the binding capacity to target DNA regions. The advantageous characteristics of cell-free systems described open attractive opportunities for high-throughput screening assays.


1972 ◽  
Vol 50 (5) ◽  
pp. 581-587 ◽  
Author(s):  
Y. Matuk

The incorporation of 14C-leucine into proteins by a cell-free system from beef retina was studied. It was found that the optimum concentration of ATP depended on the concentration of ribosomes in the incubation medium. Very little incorporation of 14C-leucine was observed in the absence of K+. The optimum concentration of phosphocreatine required for incorporation of radioactive leucine depended on the concentration of Mg2+ in the incubation medium, and the optimum concentration of K+ appears to be independent of the concentrations of Mg2+ and phosphocreatine used.Retinol and retinal had no effect, but ethanol markedly inhibited protein synthesis at concentrations higher than 2%.Puromycin (10−4 M) inhibited incorporation of 14C-leucine by about 80%. The degree of inhibition by cycloheximide depended on the concentration of pH 5 fraction in the incubation medium.


1989 ◽  
Vol 94 (3) ◽  
pp. 449-462
Author(s):  
J. Nakagawa ◽  
G.T. Kitten ◽  
E.A. Nigg

We describe a cell-free system for studying mitotic reorganization of nuclear structure. The system utilizes soluble extracts prepared from metaphase-arrested somatic chicken cells and supports both the disassembly and subsequent partial reassembly of exogenous nuclei. By fluorescence microscopy, biochemical fractionation, protein phosphorylation assays and electron microscopy, we show that chicken embryonic nuclei incubated in extracts prepared from metaphase-arrested chicken hepatoma cells undergo nuclear envelope breakdown, lamina depolymerization and chromatin condensation. These prophase-like events are strictly dependent on ATP and do not occur when nuclei are incubated in interphase extracts. Compared to interphase extracts, metaphase extracts show increased kinase activities toward a number of nuclear protein substrates, including lamins and histone H1; moreover, they specifically contain four soluble phosphoproteins of Mr 38,000, 75,000, 95,000 and 165,000. Following disassembly of exogenous nuclei in metaphase extracts, telophase-like reassembly of a nuclear lamina and re-formation of nuclear membranes around condensed chromatin can be induced by depletion of ATP from the extract. We anticipate that this reversible cell-free system will contribute to the identification and characterization of factors involved in regulatory and mechanistic aspects of mitosis.


1981 ◽  
Vol 1 (7) ◽  
pp. 635-651
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1989 ◽  
Vol 256 (1) ◽  
pp. C28-C34 ◽  
Author(s):  
S. R. Kimball ◽  
W. V. Everson ◽  
K. E. Flaim ◽  
L. S. Jefferson

A cell-free system, which maintained a linear rate of protein synthesis for up to 20 min of incubation, was prepared from isolated rat hepatocytes. The rate of protein synthesis in the cell-free system was approximately 20% of the rate obtained in isolated hepatocytes or perfused liver. More than 70% of total protein synthesis in the cell-free system was due to reinitiation, as indicated by addition of inhibitors of initiation, i.e., edeine or polyvinyl sulfate. The rate of protein synthesis and formation of 43S initiation complexes in the cell-free system were reduced to 60 and 30% of the control values, respectively, after incubation of hepatocytes in medium deprived of an essential amino acid. Therefore, the cell-free system maintained the defect in initiation induced in the intact cells by amino acid deprivation. The defect in initiation was corrected by addition of either rat liver eukaryotic initiation factor 2 or the guanine nucleotide exchange factor (GEF) to the cell-free system. A role for GEF in the defect in initiation was further implicated by experiments that showed that the activity of the factor was decreased in extracts from livers perfused with medium deficient in amino acids. The cell-free system should provide a valuable tool for investigation of mechanisms involved in the regulation of initiation of protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document