The Neuronal Cytoskeleton and Neurofibrillary Tangles

Author(s):  
B. H. Anderton ◽  
J.-P. Brion ◽  
J. Flament-Durand ◽  
M. C. Haugh ◽  
J. Kahn ◽  
...  
1992 ◽  
Vol 188 (1-2) ◽  
pp. 248-253 ◽  
Author(s):  
P. Dustin ◽  
J.-P. Brion ◽  
J. Flament-Durand

Author(s):  
P. Gambetti ◽  
G. Perry ◽  
L. Autillo-Gambetti

Neurofibrillary tangles (NFT) are one of the major pathologic lesions of Alzheimer's disease. These neuronal inclusions are predominantly composed of paired helical filaments (PHF), which consist of two 10 nm filaments winding around each other with an approximately 80 nm periodicity. Besides PHF, NFT comprise also 15 nm filaments, 10 nm filaments which are probably neurofilaments, microtubules and granular material. At variance with the neuronal cytoskeleton, PHF are insoluble in ionic detergent.Studies at the light microscope level have shown that NFT have unique antigenic determinants as well as determinants in common with elements of the normal neuronal cytoskeleton such as neurofilaments and microtubule-associated proteins. The present study uses immunocytochemistry and cytochemistry at the electron microscope level to assess which NFT component contains these determinants and whether these antigenic determinants are soluble in an ionic detergent.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


1996 ◽  
Vol 22 (1) ◽  
pp. 12-16 ◽  
Author(s):  
J. F. Geddes ◽  
G. H. Vowles ◽  
S. F. D. Robinson ◽  
J. C. Sutcliffe

Sign in / Sign up

Export Citation Format

Share Document