Breathlessness and Respiratory Esophageal Pressure

1988 ◽  
pp. 125-131
Author(s):  
O. Nisell ◽  
G. Hedenstierna
Keyword(s):  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xu-Ying Luo ◽  
Xuan He ◽  
Yi-Min Zhou ◽  
Yu-Mei Wang ◽  
Jing-Ran Chen ◽  
...  

Abstract Background Patient–ventilator asynchrony is common in mechanically ventilated patients and may be related to adverse outcomes. Few studies have reported the occurrence of asynchrony in brain-injured patients. We aimed to investigate the prevalence, type and severity of patient–ventilator asynchrony in mechanically ventilated patients with brain injury. Methods This prospective observational study enrolled acute brain-injured patients undergoing mechanical ventilation. Esophageal pressure monitoring was established after enrollment. Flow, airway pressure, and esophageal pressure–time waveforms were recorded for a 15-min interval, four times daily for 3 days, for visually detecting asynchrony by offline analysis. At the end of each dataset recording, the respiratory drive was determined by the airway occlusion maneuver. The asynchrony index was calculated to represent the severity. The relationship between the prevalence and the severity of asynchrony with ventilatory modes and settings, respiratory drive, and analgesia and sedation were determined. Association of severe patient–ventilator asynchrony, which was defined as an asynchrony index  ≥ 10%, with clinical outcomes was analyzed. Results In 100 enrolled patients, a total of 1076 15-min waveform datasets covering 330,292 breaths were collected, in which 70,156 (38%) asynchronous breaths were detected. Asynchrony occurred in 96% of patients with the median (interquartile range) asynchrony index of 12.4% (4.3%–26.4%). The most prevalent type was ineffective triggering. No significant difference was found in either prevalence or asynchrony index among different classifications of brain injury (p > 0.05). The prevalence of asynchrony was significantly lower during pressure control/assist ventilation than during other ventilatory modes (p < 0.05). Compared to the datasets without asynchrony, the airway occlusion pressure was significantly lower in datasets with ineffective triggering (p < 0.001). The asynchrony index was significantly higher during the combined use of opioids and sedatives (p < 0.001). Significantly longer duration of ventilation and hospital length of stay after the inclusion were found in patients with severe ineffective triggering (p < 0.05). Conclusions Patient–ventilator asynchrony is common in brain-injured patients. The most prevalent type is ineffective triggering and its severity is likely related to a long duration of ventilation and hospital stay. Prevalence and severity of asynchrony are associated with ventilatory modes, respiratory drive and analgesia/sedation strategy, suggesting treatment adjustment in this particular population. Trial registration The study has been registered on 4 July 2017 in ClinicalTrials.gov (NCT03212482) (https://clinicaltrials.gov/ct2/show/NCT03212482).


2008 ◽  
Vol 266 (8) ◽  
pp. 1305-1308 ◽  
Author(s):  
Sławomir Marszałek ◽  
Anna Żebryk-Stopa ◽  
Jacek Kraśny ◽  
Andrzej Obrębowski ◽  
Wojciech Golusiński

1987 ◽  
Vol 62 (5) ◽  
pp. 1962-1969 ◽  
Author(s):  
W. A. Whitelaw ◽  
B. McBride ◽  
G. T. Ford

The mechanism by which large lung volume lessens the discomfort of breath holding and prolongs breath-hold time was studied by analyzing the pressure waves made by diaphragm contractions during breath holds at various lung volumes. Subjects rebreathed a mixture of 8% CO2–92% O2 and commenced breath holding after reaching an alveolar plateau. At all volumes, regular rhythmic contractions of inspiratory muscles, followed by means of gastric and pleural pressures, increased in amplitude and frequency until the breakpoint. Expiratory muscle activity was more prominent in some subjects than others, and increased through each breath hold. Increasing lung volume caused a delay in onset and a decrease in frequency of contractions with no consistent change in duty cycle and a decline in magnitude of esophageal pressure swings that could be accounted for by force-length and geometric properties. The effect of lung volume on the timing of contractions most resembled that of a chest wall reflex and is consistent with the hypothesis that the contractions are a major source of dyspnea in breath holding.


PEDIATRICS ◽  
1996 ◽  
Vol 98 (5) ◽  
pp. 871-882 ◽  
Author(s):  
Christian Guilleminault ◽  
Rafael Pelayo ◽  
Damien Leger ◽  
Alex Clerk ◽  
Robert C. Z. Bocian

Objective. To determine whether upper airway resistance syndrome (UARS) can be recognized and distinguished from obstructive sleep apnea syndrome (OSAS) in prepubertal children based on clinical evaluations, and, in a subgroup of the population, to compare the efficacy of esophageal pressure (Pes) monitoring to that of transcutaneous carbon dioxide pressure (tcPco2) and expired carbon dioxide (CO2) measurements in identifying UARS in children. Study Design. A retrospective study was performed on children, 12 years and younger, seen at our clinic since 1985. Children with diagnoses of sleep-disordered breathing were drawn from our database and sorted by age and initial symptoms. Clinical findings, based on interviews and questionnaires, an orocraniofacial scale, and nocturnal polygraphic recordings were tabulated and compared. If the results of the first polygraphic recording were inconclusive, a second night's recording was performed with the addition of Pes monitoring. In addition, simultaneous measurements of tcPco2 and endtidal CO2 with sampling through a catheter were performed on this second night in 76 children. These 76 recordings were used as our gold standard, because they were the most comprehensive. For this group, 1848 apneic events and 7040 abnormal respiratory events were identified based on airflow, thoracoabdominal effort, and Pes recordings. We then analyzed the simultaneously measured tcPCo2 and expired CO2 levels to ascertain their ability to identify these same events. Results. The first night of polygraphic recording was inconclusive enough to warrant a second recording in 316 of 411 children. Children were identified as having either UARS (n = 259), OSAS (n = 83), or other sleep disorders (n = 69). Children with small triangular chins, retroposition of the mandible, steep mandibular plane, high hard palate, long oval-shaped face, or long soft palate were highly likely to have sleep-disordered breathing of some type. If large tonsils were associated with these features, OSAS was much more frequently noted than UARS. In the 76 gold standard children, Pes, tcPco2, and expired CO2 measurements were in agreement for 1512 of the 1848 apneas and hypopneas that were analyzed. Of the 7040 upper airway resistance events, only 2314 events were consonant in all three measures. tcPco2 identified only 33% of the increased respiratory events identified by Pes; expired CO2 identified only 53% of the same events. Conclusions. UARS is a subtle form of sleep-disordered breathing that leads to significant clinical symptoms and day and nighttime disturbances. When clinical symptoms suggest abnormal breathing during sleep but obstructive sleep apneas are not found, physicians may, mistakenly, assume an absence of breathing-related sleep problems. Symptoms and orocraniofacial information were not useful in distinguishing UARS from OSAS but were useful in distinguishing sleep-disordered breathing (UARS and OSAS) from other sleep disorders. The analysis of esophageal pressure patterns during sleep was the most revealing of the three techniques used for recognizing abnormal breathing patterns during sleep.


Sign in / Sign up

Export Citation Format

Share Document