A Study of Clamps for Semi-Continuous Hydrostatic Extrusion

Author(s):  
M. E. Said ◽  
J. M. Alexander
Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Physica B+C ◽  
1986 ◽  
Vol 139-140 ◽  
pp. 816-818
Author(s):  
John F. Lakner

1972 ◽  
Vol 14 (5) ◽  
pp. 447-449
Author(s):  
L. F. Vereshchagin ◽  
Yu. S. Konyaev ◽  
�. M. Berzon ◽  
M. V. Veller

1979 ◽  
Vol 21 (10) ◽  
pp. 795-798
Author(s):  
Yu. F. Chernyi ◽  
F. K. Tkachenko ◽  
V. Z. Spuskanyuk ◽  
A. I. Mel'nichenko ◽  
A. A. Lyadskaya

2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


1975 ◽  
Vol 97 (1) ◽  
pp. 25-31 ◽  
Author(s):  
K. M. Kulkarni ◽  
J. A. Schey

Hydrostatic extrusion of annealed 1100 aluminum was investigated experimentally at ambient temperature. The principal variables studied were lubricant viscosity which was varied from less than 100 to over 76,000 SUS at 100 deg F and the diametral clearance between the follower block and the extrusion cylinder which ranged from 0.0005 to 0.0030 in. for the 1.026 in. dia. cylinder. The specimen diameter was 0.97 or 1.00 in. corresponding to an extrusion ratio of 4.75 or 5.00, respectively. The included die angle was either 60 deg or 90 deg. The results show that with a proper combination of the lubricant viscosity and the follower block clearance, hydrostatic extrusion can be accomplished without the necessity of any sealing of the container on the follower block side. The optimum clearance for minimum breakthrough pressure increases as the lubricant viscosity increases. The extrusion force increases with die angle. The paper discusses the various factors that affect the magnitude of the breakthrough pressure and the occasional uneven bamboo-type appearance of the surface. Processing conditions must be selected carefully since the lowest extrusion force does not necessarily lead to a product with the best surface finish.


Sign in / Sign up

Export Citation Format

Share Document