Geostatistics in Resource/Reserve Estimation: A Survey of the Canadian Mining Industry Practice

Author(s):  
Michel Dagbert
2020 ◽  
Vol 81 (1-4) ◽  
pp. 72-77
Author(s):  
Manas K. Mallick ◽  
Bhanwar S. Choudhary ◽  
Gnananandh Budi

Geostatistics plays an important role for reserve estimation in mining industry. Geostatistical tools became popular because of its high degree of accuracy and time saving process for estimation. The uncertainty of geological deposit can be populated by geo-statistical tools. The limestone ore deposit was studied in this paper. The assay value of individual constituents of limestone ore i.e CaO, SiO2, Al2O3 and Fe2O3 were determined for a block by using Inverse Square Distance Weighting (ISDW) method. The average assay value of those individual constituents were 45.85, 15.94, 1.56 and 0.82 percentage respectively. The assay value of CaO was also estimated by two linear method of estimation i.e ISDW and Ordinary Kriging (OK). The assay value of CaO were determined 45.85 and 44.67 percentage respectively. The assay values were properly validated and concluded accordingly. The application of ISDW and OK were implemented to build the resource model together in order to assess the uncertainty of the deposit. Grade estimation by using different geo-statistical techniques are done by SURPAC mine planning software.


SEG Discovery ◽  
2021 ◽  
pp. 27-36 ◽  
Author(s):  
Simon M. Jowitt ◽  
Brian A. McNulty

Editor’s note: The Geology and Mining series, edited by Dan Wood and Jeffrey Hedenquist, is designed to introduce early-career professionals and students to a variety of topics in mineral exploration, development, and mining, in order to provide insight into the many ways in which geoscientists contribute to the mineral industry. Abstract Resource and reserve estimation is a critical step in mine development and the progression from mineral exploration to commodity production. The data inputs typically change over time and reflect variations in geoscientific knowledge as well as the modifying factors required by regulation for estimating a reserve. These factors include mineral (ore) processing, metallurgical treatment of the ore, infrastructure requirements for mine and workforce, and the transportation of processed products to buyers; others that will affect the production of metals and/or minerals from a deposit include economic, marketing, legal, environmental, social, and governmental factors. All are needed by the mining industry to quantify the contained mineralization within mineral deposits that likely warrant the significant capital investment required to build a mine. However, these resource and reserve data are estimates that change over time due to unpredicted variations in the initial inputs. Paramount to the two estimates are the quality and accuracy of the geologic inputs and the communication of these to the professionals tasked with making each estimate. Geostatistical processing of the grade of the resource has become a dominant element of the estimation process, but this requires transparent and informed communication between geologists and mining engineers with the geostatistician responsible for mathematically processing the grade data. Regulatory constraints also mean that estimated resources and reserves seldom capture the full extent of a mineral deposit. Similarly, co- and by-product metals and minerals that are commonly produced by mines may not be captured by resource and reserve estimates because of their limited economic contribution. This suggests that reporting standards for co- and by-products—particularly for the critical metals that may have a sharp increase in demand—need improvement. Finally, the importance of these data to the mining industry is such that informing investors and the broader public about the nature of resource and reserve estimates, and the meaning of associated terminology, is also essential when considering the global metal and mineral supply, and the role of mining in modern society.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


1999 ◽  
Author(s):  
S. Gallagher ◽  
K. Cornelius ◽  
L. Steiner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document