Evaluating the Cost-Effectiveness of Brown-Rot Control Strategies

Author(s):  
Annemarie Breukers ◽  
Monique Mourits ◽  
Wopke Van Der Werf ◽  
Dirk L. Kettenis ◽  
Alfons Oude Lansink
2010 ◽  
Vol 139 (5) ◽  
pp. 754-764 ◽  
Author(s):  
F. M. BAPTISTA ◽  
T. HALASA ◽  
L. ALBAN ◽  
L. R. NIELSEN

SUMMARYTargets for maximum acceptable levels of Salmonella in pigs and pork are to be decided. A stochastic simulation model accounting for herd and abattoir information was used to evaluate food safety and economic consequences of different surveillance and control strategies, based among others on Danish surveillance data. An epidemiological module simulated the Salmonella carcass prevalence for different scenarios. Cost-effectiveness analysis was used to compare the costs of the different scenarios with their expected effectiveness. Herd interventions were not found sufficient to attain Salmonella carcass prevalence <1%. The cost-effectiveness of abattoir interventions changed with abattoir size. The most cost-effective strategy included the use of steam vacuum and steam ultrasound. Given uncertainty of the effect of steam vacuum and steam ultrasound, model results should be updated as more information becomes available. This framework contributes to informed decision-making for a more cost-effective surveillance and control of Salmonella in pigs and pork.


2020 ◽  
Vol 14 (10) ◽  
pp. e0008805
Author(s):  
Gerhart Knerer ◽  
Christine S. M. Currie ◽  
Sally C. Brailsford

Background and aims Dengue fever is a major public health problem in tropical/subtropical regions. Prior economic analyses have predominantly evaluated either vaccination or vector-control programmes in isolation and do not really consider the incremental benefits and cost-effectiveness of mixed strategies and combination control. We estimated the cost-effectiveness of single and combined approaches in Thailand. Methods The impacts of different control interventions were analysed using a previously published mathematical model of dengue epidemiology and control incorporating seasonality, age structure, consecutive infection, cross protection, immune enhancement and combined vector-host transmission. An economic model was applied to simulation results to estimate the cost-effectiveness of 4 interventions and their various combinations (6 strategies): i) routine vaccination of 1-year olds; ii) chemical vector control strategies targeting adult and larval stages separately; iii) environmental management/ public health education and awareness [EM/ PHEA]). Payer and societal perspectives were considered. The health burden of dengue fever was assessed using disability-adjusted life-years (DALYs) lost. Costs and effects were assessed for 10 years. Costs were discounted at 3% annually and updated to 2013 United States Dollars. Incremental cost-effectiveness analysis was carried out after strategies were rank-ordered by cost, with results presented in a table of incremental analysis. Sensitivity and scenario analyses were undertaken; and the impact and cost-effectiveness of Wolbachia was evaluated in exploratory scenario analyses. Results From the payer and societal perspectives, 2 combination strategies were considered optimal, as all other control strategies were dominated. Vaccination plus adulticide plus EM/ PHEA was deemed cost-effective according to multiple cost-effectiveness criteria. From the societal perspective, incremental differences vs. adulticide and EM/ PHEA resulted in costs of $157.6 million and DALYs lost of 12,599, giving an expected ICER of $12,508 per DALY averted. Exploratory scenario analyses showed Wolbachia to be highly cost-effective ($343 per DALY averted) vs. other single control measures. Conclusions Our model shows that individual interventions can be cost-effective, but that important epidemiological reductions and economic impacts are demonstrated when interventions are combined as part of an integrated approach to combating dengue fever. Exploratory scenario analyses demonstrated the potential epidemiological and cost-effective impact of Wolbachia when deployed at scale on a nationwide basis. Our findings were robust in the face of sensitivity analyses.


2011 ◽  
Vol 5 (S6) ◽  
Author(s):  
J Robotham ◽  
N Graves ◽  
B Cookson ◽  
A Barnett ◽  
J Wilson ◽  
...  

Author(s):  
George Theodore Azu-Tungmah ◽  
Francis T. Oduro ◽  
Gabriel A. Okyere

In this article, we apply the optimal control theory to a new age-structured malaria model with three infectious compartments for people under five years, over five years and pregnant women. The model is formulated for malaria endemic areas in the world and the following malaria control strategies ITN, IRS, Chemoprophylaxis and Improved Clinical Treatment were examined and analysed on the mode. The Cost-effectiveness Analysis points out that more attention should be given Insecticide -Treated bed nets (ITNs) in order to eliminate the malaria disease globally because the female Anopheles mosquitoes need human blood to lay their eggs. The expression for the effective reproduction number  has been derived by using the next-generation method. The impact of the controls on the was studied and it came out that all the four controls have a positive impact such that the ITNs can reduce to zero as the value of ITNs approaches one. Pontryagin’s Maximum Principle was applied to analyse the optimal control model theoretically and the optimality system was solved numerically through an iterative scheme. The optimal plots (Figs. 4-8) reveal that best control strategies for malaria elimination is the combination of ITN, Chemoprophylaxis and Improved Clinical Treatment. However, the Cost-effectiveness Analysis points out that ITN is economically best solution for fighting malaria in poor malaria endemic areas.


Sign in / Sign up

Export Citation Format

Share Document