How to Create and Deploy Infection Models for Plant Pathogens

Author(s):  
R. D. Magarey ◽  
T. B. Sutton
2005 ◽  
Vol 95 (1) ◽  
pp. 92-100 ◽  
Author(s):  
R. D. Magarey ◽  
T. B. Sutton ◽  
C. L. Thayer

In this study, a simple generic infection model was developed for predicting infection periods by fungal foliar pathogens. The model is designed primarily for use in forecasting pathogens that do not have extensive epidemiological data. Most existing infection models require a background epidemiological data set, usually including laboratory estimates of infection at multiple temperature and wetness combinations. The model developed in this study can use inputs based on subjective estimates of the cardinal temperatures and the wetness duration requirement. These inputs are available for many pathogens or may be estimated from related pathogens. The model uses a temperature response function which is scaled to the minimum and optimum values of the surface wetness duration requirement. The minimum wetness duration requirement (Wmin) is the number of hours required to produce 20% disease incidence or 5% disease severity on inoculated plant parts at a given temperature. The model was validated with published data from 53 controlled laboratory studies, each with at least four combinations of temperature and wetness. Validation yielded an average correlation coefficient of 0.83 and a root mean square error of 4.9 h, but there was uncertainty about the value of the input parameters for some pathogens. The value of Wmin varied from 1 to 48 h and was relatively uniform for species in the genera Cercospora, Alternaria, and Puccinia but less so for species of Phytophthora, Venturia, and Colletotrichum. Operationally, infection models may use hourly or daily weather inputs. In the case of the former, information also is required to estimate the critical dry-period interruption value, defined as the duration of a dry period at relative humidities <95% that will result in a 50% reduction in disease compared with a continuous wetness period. Pathogens were classified into three groups based on their critical dry-period interruption value. The infection model is being used to create risk maps of exotic pests for the U.S. Department of Agriculture's Animal Plant Health and Inspection Service.


Author(s):  
C. W. Mims ◽  
E. A. Richardson

The advantages of freeze substitution fixation over conventional chemical fixation for preservation of ultrastructural details in fungi have been discussed by various authors. As most ascomycetes, basidiomycetes and deuteromycetes do not fix well using conventional chemical fixation protocols, freeze substitution has attracted the attention of many individuals interested in fungal ultrastructure. Thus far most workers using this technique on fungi have concentrated on thin walled somatic hyphae. However, in our laboratory we have experimented with the use of freeze substitution on a variety of fungal reproductive structures and spores with promising results.Here we present data on freeze substituted samples of sporangia of the zygomycete Umbellopsis vinacea, basidia of Exobasidium camelliae var. gracilis, developing teliospores of the smut Sporisorium sorghi, germinating teliospores of the rust Gymnosporangium clavipes, germinating conidia of the deuteromycete Cercosporidium personatum, and developing ascospores of Ascodesmis nigricans.Spores of G. clavipes and C. personatum were deposited on moist pieces of sterile dialysis membrane where they hydrated and germinated. Asci of A. nigricans developed on pieces of dialysis membrane lying on nutrient agar plates. U. vinacea was cultured on small pieces of agar-coated wire. In the plant pathogens E. camelliae var. gracilis and S. sorghi, a razor blade was used to remove smal1 pieces of infected host issue. All samples were plunged directly into liquid propane and processed for study according to Hoch.l Samples on dialysis membrane were flat embedded. Serial thin sections were cut using a diamond knife, collected on slot grids, and allowed to dry down onto Formvar coated aluminum racks. Sections were post stained with uranyl acetate and lead citrate.


Homeopathy ◽  
2020 ◽  
Author(s):  
Thais Moraes Ferreira ◽  
Mariana Zandomênico Mangeiro ◽  
Alexandre Macedo Almeida ◽  
Ricardo Moreira Souza

Abstract Background There are relatively few scientific works on the use of homeopathy to manage plant pathogens, particularly nematodes. A handful of studies focused on Meloidogyne spp. parasitizing vegetables have brought contradictory results on nematode control and enhancement of plant tolerance to parasitism. Objective Our goal was to assess the effect of Cina—a well-known anti-nematode ingredient—on Meloidogyne enterolobii parasitizing lettuce. Methods Cina was applied daily on nematode-inoculated plants, from the seedling stage until harvest. We tested an evenly spaced range of Hahnemannian concentrations (c), which were applied though irrigation with a constant dose of the ingredient. Several absolute and relative controls were employed to allow the assessment of the effect of Cina on nematode reproduction and lettuce growth. Results Cina affected growth of non-parasitized plants, both positively and negatively; this effect was modulated by the c applied and the thermal stress suffered by the plants in one of the assays. The effect of Cina on the growth of nematode-parasitized plants was neutral or negative. Cina reduced nematode reproduction by 25–36%. Conclusion Based on the moderate negative effect of Cina on M. enterolobii reproduction, it seems this ingredient may be useful as a complementary strategy for Meloidogyne control. But Cina did not enhance the tolerance of lettuce to Meloidogyne spp.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


Sign in / Sign up

Export Citation Format

Share Document