Chemical And Ecological Problems Of Small Reservoirs At Designing Of Wastewater Treatment Installations

Author(s):  
Alla Fedorovna Choban ◽  
Igor Winkler
2021 ◽  
Vol 12 ◽  
Author(s):  
Wenning Mai ◽  
Jiamin Chen ◽  
Hai Liu ◽  
Jiawei Liang ◽  
Jinfeng Tang ◽  
...  

The discharge of excess nitrogenous pollutants in rivers or other water bodies often leads to serious ecological problems and results in the collapse of aquatic ecosystems. Nitrogenous pollutants are often derived from the inefficient treatment of industrial wastewater. The biological treatment of industrial wastewater for the removal of nitrogen pollution is a green and efficient strategy. In the initial stage of the nitrogen removal process, the nitrogenous pollutants are converted to ammonia. Traditionally, nitrification and denitrification processes have been used for nitrogen removal in industrial wastewater; while currently, more efficient processes, such as simultaneous nitrification-denitrification, partial nitrification-anammox, and partial denitrification-anammox processes, are used. The microorganisms participating in nitrogen pollutant removal processes are diverse, but information about them is limited. In this review, we summarize the microbiota participating in nitrogen removal processes, their pathways, and associated functional genes. We have also discussed the design of efficient industrial wastewater treatment processes for the removal of nitrogenous pollutants and the application of microbiome engineering technology and synthetic biology strategies in the modulation of the nitrogen removal process. This review thus provides insights that would help in improving the efficiency of nitrogen pollutant removal from industrial wastewater.


2010 ◽  
Vol 13 (3) ◽  
pp. 54-66
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

This study was performed to evaluate the efficiency of tapioca processing wastewater treatment using aerobic biofilter with variety of biofilter media: coir, coal, PVC plastic and Bio - Ball BB15 plastic. Research results in the lab demonstrated all four aerobic biofilter models processed can treated completely N and COD which COD reached 90-98% and N reached 61-92%, respectively, at the organic loading rates in range of 0.5, 1, 1.5 and 2 kgCOD/m3.day. The results identified coir filter was the best in four researched materials with removal COD and specific substract utilization rate can reach 98%, and 0.6 kg COD/kgVSS.day. Research results open the new prospects for the application of the cheap materials, available for wastewater treatment.


2019 ◽  
Vol 330 (7) ◽  
pp. 41-42
Author(s):  
A.G. Ibragimov ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document