Characterization of an Inhibitory Strain of Pseudomonas syringae pv. syringae with Potential as a Biocontrol Agent for Bacterial Blight on Soybean

Author(s):  
S. D. Braun ◽  
B. Völksch
2012 ◽  
Vol 134 (1) ◽  
pp. 205-216 ◽  
Author(s):  
Alberto Martín-Sanz ◽  
José Luis Palomo ◽  
Marcelino Pérez de la Vega ◽  
Constantino Caminero

2016 ◽  
Vol 7 ◽  
Author(s):  
Sofie Rombouts ◽  
Anneleen Volckaert ◽  
Sofie Venneman ◽  
Bart Declercq ◽  
Dieter Vandenheuvel ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


2002 ◽  
Vol 68 (9) ◽  
pp. 4604-4612 ◽  
Author(s):  
Catherine A. Axtell ◽  
Gwyn A. Beattie

ABSTRACT We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water deprivation caused by the presence of NaCl, Na2SO4, KCl, or polyethylene glycol (molecular weight, 8000). The fusion was induced to a detectable level by NaCl concentrations of as low as 10 mM in all three bacterial species. Water deprivation induced proU-gfp expression in both planktonic and surface-associated cells; however, it induced a higher level of expression in the surface-associated cells. Following the introduction of P. agglomerans biosensor cells onto bean leaves, the cells detected a significant decrease in water availability within only 5 min. After 30 min, the populations were exposed, on average, to a water potential equivalent to that imposed by approximately 55 mM NaCl. These results demonstrate the effectiveness of a proU-gfp-based biosensor for evaluating water availability on leaves. Furthermore, the inducibility of proU-gfp in multiple bacterial species illustrates the potential for tailoring proU-gfp-based biosensors to specific habitats.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alberto J. Valencia-Botín ◽  
María E. Cisneros-López

Wheat is affected by some pathovars ofPseudomonas syringaeand by otherPseudomonasspecies. Of these,P. syringaepv.syringaeis the major one responsible for reduction. Recent studies have been made to characterize and identify the pathogen and to determine its aggressiveness and the pattern of colonization in seed and its effects on seed yield, yield components, and source-sink relationships during postanthesis. It was found that the reduction in the aerial biomass production is the best way to evaluate the aggressiveness of this bacterium, and the spray inoculation is good tool to make evaluations at seedling stage. The characterization of bacteria fingerprintings with molecular markers such as RAPD-PCR, ERIC, and REP-PCR is available. Genomic evolution has been elucidated with next-generation genome sequencing. Also, the colonization pattern shows that, early on, microcolonies are frequently detected in the aleurone layer, later in the endosperm and finally close to the crease and even in some cells of the embryo itself. In the wheat cultivars Seri M82 and Rebeca F2000 seed yield and its components are negatively affected. In general,P. syringaepv.syringaereduces the plant height, seed yield, and yield components, as well as the growth of most organs. When this bacterium attacks, the stems are the predominant sink organs and the leaf laminae and panicles are the predominant source organs.


1993 ◽  
Vol 2 (5) ◽  
pp. 285-293 ◽  
Author(s):  
R. N. WATERHOUSE ◽  
D. J. SILCOCK ◽  
H. L. WHITE ◽  
H. K. BUHARIWALLA ◽  
L. A. GLOVER

2020 ◽  
Vol 110 (5) ◽  
pp. 989-998
Author(s):  
Cláudio M. Vrisman ◽  
Loïc Deblais ◽  
Yosra A. Helmy ◽  
Reed Johnson ◽  
Gireesh Rajashekara ◽  
...  

Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.


Sign in / Sign up

Export Citation Format

Share Document