Mass mortality of the invasive bivalve Corbicula fluminea induced by a severe low-water event and associated low water temperatures

Author(s):  
Stefan Werner ◽  
Karl-Otto Rothhaupt
2020 ◽  
Vol 152 ◽  
pp. 105881
Author(s):  
Carlos Silva ◽  
António Anselmo ◽  
Inês P.E. Macário ◽  
Daniela de Figueiredo ◽  
Fernando J.M. Gonçalves ◽  
...  

Coral Reefs ◽  
2021 ◽  
Author(s):  
Eleanor J. Vaughan ◽  
Shaun K. Wilson ◽  
Samantha J. Howlett ◽  
Valeriano Parravicini ◽  
Gareth J. Williams ◽  
...  

AbstractScleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (δ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal δ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in δ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tongqing Zhang ◽  
Jiawen Yin ◽  
Shengkai Tang ◽  
Daming Li ◽  
Xiankun Gu ◽  
...  

AbstractThe Asian Clam (Corbicula fluminea) is a valuable commercial and medicinal bivalve, which is widely distributed in East and Southeast Asia. As a natural nutrient source, the clam is rich in protein, amino acids, and microelements. The genome of C. fluminea has not yet been characterized; therefore, genome-assisted breeding and improvements cannot yet be implemented. In this work, we present a de novo chromosome-scale genome assembly of C. fluminea using PacBio and Hi-C sequencing technologies. The assembled genome comprised 4728 contigs, with a contig N50 of 521.06 Kb, and 1,215 scaffolds with a scaffold N50 of 70.62 Mb. More than 1.51 Gb (99.17%) of genomic sequences were anchored to 18 chromosomes, of which 1.40 Gb (92.81%) of genomic sequences were ordered and oriented. The genome contains 38,841 coding genes, 32,591 (83.91%) of which were annotated in at least one functional database. Compared with related species, C. fluminea had 851 expanded gene families and 191 contracted gene families. The phylogenetic tree showed that C. fluminea diverged from Ruditapes philippinarum, ~ 228.89 million years ago (Mya), and the genomes of C. fluminea and R. philippinarum shared 244 syntenic blocks. Additionally, we identified 2 MITF members and 99 NLRP members in C. fluminea genome. The high-quality and chromosomal Asian Clam genome will be a valuable resource for a range of development and breeding studies of C. fluminea in future research.


Biomarkers ◽  
2021 ◽  
pp. 1-12
Author(s):  
İbrahim Ender Künili ◽  
Selin Ertürk Gürkan ◽  
Ata Aksu ◽  
Emre Turgay ◽  
Fikret Çakir ◽  
...  

Author(s):  
Neil E. Coughlan ◽  
Ross N. Cuthbert ◽  
Eoghan M. Cunningham ◽  
Stephen Potts ◽  
Diarmuid McSweeney ◽  
...  

AbstractSuppression of established populations of invasive alien species can be a complex and expensive process, which is frequently unsuccessful. The Asian clam, Corbicula fluminea (Müller, 1774), is considered a high impact invader that can adversely alter freshwater ecosystems and decrease their socioeconomic value. To date, C. fluminea continues to spread and persist within freshwater environments worldwide, despite repeated management attempts to prevent dispersal and suppress established populations. As extensive C. fluminea beds can often become exposed during low-water conditions, the direct application of hot or cold thermal shock treatments has been proposed as suitable mechanism for their control. Further, mechanical substrate disturbance may enhance the efficacy of thermal shock treatments by facilitating exposures to multiple layers of buried clams. In the present study, we advanced these methods by assessing combined applications of both hot and cold thermal shock treatments for control of C. fluminea, using steam spray (≥100 °C; 350 kPa), low- or high-intensity open-flame burns (~1000 °C) and dry ice (−78 °C). In a direct comparison of raking combined with hot thermal shock applications, both steam and high-intensity open-flame treatments tended to be most effective, especially following multiple applications. In addition, when hot thermal treatments are followed by a final cold shock (i.e. dry ice), steam treatments tended to be most effective. Further, when dry ice was applied either alone or prior to an application of a hot shock treatment, substantial if not complete C. fluminea mortality was observed. Overall, this study demonstrated that combined applications of hot and cold thermal shock treatments, applied following the disruption of the substrate, can substantially increase C. fluminea mortality compared to separate hot or cold treatments.


Author(s):  
A. Domingues ◽  
J. P. da Costa ◽  
T. A. P. Rocha-Santos ◽  
F. J. M. Gonçalves ◽  
R. Pereira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document