The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes

Author(s):  
Jukka Aroviita ◽  
Heikki Hämäläinen
Hydrobiologia ◽  
2008 ◽  
Vol 613 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Tapio Sutela ◽  
Teppo Vehanen

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 362
Author(s):  
Liubov Yanygina

Mollusks are the macroinvertebrates most commonly introduced into fresh water. In invaded reservoirs, alien mollusks form a large biomass due to their large size. Climate change, water level regulation, and anthropogenic impacts on the environment lead to the drying up of water bodies and the death of littoral macroinvertebrates. To assess the impact of invasive snail mass mortality on water quality, laboratory experiments on the snail tissue decomposition were performed, the potential release of nutrients into aquatic ecosystems was calculated, and the predicted concentrations of nutrients were verified by field studies. The laboratory experiment showed quick decomposition of the common river snail Viviparus viviparus tissues with release into the environment of ammonium and total phosphorus of 2.72 ± 0.14 mg and 0.10 ± 0.02 mg, respectively, per gram of decomposing tissue. The concentrations of ammonium, nitrates, and total phosphorus at the site of snail death reached 2.70 ± 0.10, 3.13 ± 0.38 and 0.30 ± 0.02 mg/L, respectively. This indicates local contamination of the Novosibirsk reservoir littoral with decomposition products. The aquatic management, water level regulation, and control of undesirable species should take into account the likelihood of water quality decreasing as a result of macroinvertebrate mass mortality.


2004 ◽  
Vol 118 (2) ◽  
pp. 179
Author(s):  
Tyler W. Smith ◽  
George W. Douglas ◽  
Allan G. Harris

In Canada, Lipocarpha micrantha has been documented at eight locations in Quebec, Ontario, and British Columbia. Four of these populations have apparently been extirpated. The remaining populations, ranging from 120 to approximately 40000 plants, are all northern disjuncts from the main range of this species. Threats to these populations include water level regulation and shoreline development. Considering the threats to the habitat of Lipocarpha micrantha, and the small size of most of the remaining populations, it has been designated an Endangered species in Canada.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


Author(s):  
Robert M. Heitsenrether ◽  
Mark H. Bushnell ◽  
John D. Boon

Sign in / Sign up

Export Citation Format

Share Document