Elastic Grid-Based Multi-Fovea Algorithm for Real-Time Object-Motion Detection in Airborne Surveillance

Author(s):  
Balazs Gergely Soos ◽  
Vilmos Szabo ◽  
Csaba Rekeczky
2021 ◽  
Vol 1780 (1) ◽  
pp. 012032
Author(s):  
Young Keun Kim ◽  
Yeong Gyoo Jeon ◽  
Seung Ho Shin

2011 ◽  
Vol 480-481 ◽  
pp. 1329-1334
Author(s):  
Wei Zheng ◽  
Zhan Zhong Cui

An effective non-contact electrostatic detection method is used for human body motion detection. Theoretical analysis and pratical experiments are carried out to prove that this method is effective in the field of human body monitoring, in which a model for human body induced potential by stepping has been proposed. Furthermore, experiment results also prove that it’s feasible to measure the average velocity and route of human body motion by multiple electrodes array. What’s more the real-time velocity and direction of human body motion can be determined by orthogonal electrostatic detector array, and the real-time velocity and direction of human body motion can be obtained within the range of 2 meters.


2009 ◽  
Vol 09 (04) ◽  
pp. 609-627 ◽  
Author(s):  
J. WANG ◽  
N. V. PATEL ◽  
W. I. GROSKY ◽  
F. FOTOUHI

In this paper, we address the problem of camera and object motion detection in the compressed domain. The estimation of camera motion and the moving object segmentation have been widely stated in a variety of context for video analysis, due to their capabilities of providing essential clues for interpreting the high-level semantics of video sequences. A novel compressed domain motion estimation and segmentation scheme is presented and applied in this paper. MPEG-2 compressed domain information, namely Motion Vectors (MV) and Discrete Cosine Transform (DCT) coefficients, is filtered and manipulated to obtain a dense and reliable Motion Vector Field (MVF) over consecutive frames. An iterative segmentation scheme based upon the generalized affine transformation model is exploited to effect the global camera motion detection. The foreground spatiotemporal objects are separated from the background using the temporal consistency check to the output of the iterative segmentation. This consistency check process can coalesce the resulting foreground blocks and weed out unqualified blocks. Illustrative examples are provided to demonstrate the efficacy of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document