Detection of Human Body Motion Based on Electrostatic Measurements in the Indoor Environment

2011 ◽  
Vol 480-481 ◽  
pp. 1329-1334
Author(s):  
Wei Zheng ◽  
Zhan Zhong Cui

An effective non-contact electrostatic detection method is used for human body motion detection. Theoretical analysis and pratical experiments are carried out to prove that this method is effective in the field of human body monitoring, in which a model for human body induced potential by stepping has been proposed. Furthermore, experiment results also prove that it’s feasible to measure the average velocity and route of human body motion by multiple electrodes array. What’s more the real-time velocity and direction of human body motion can be determined by orthogonal electrostatic detector array, and the real-time velocity and direction of human body motion can be obtained within the range of 2 meters.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


Author(s):  
Samuel Medeiros Araujo Morais ◽  
Jessyca Iasmyn Lucena Araujo ◽  
Alexandre Jean Rene Serres ◽  
Camila Caroline Rodrigues de Albuquerque ◽  
Maraiza Prescila dos Santos ◽  
...  

Author(s):  
Dakui Feng ◽  
Xuanshu Chen ◽  
Hao Liu ◽  
Zhiguo Zhang ◽  
Xianzhou Wang

Submarine is usually equipped with two different control device arrangements, namely a cruciform and a X rudder configuration. In this paper, numerical simulations of the DARPA Suboff submarine and its retrofitted submarine with a X rudder configuration are presented. Turning simulations in model scale were studied to compare the turning abilities of the two different control device arrangements. The computations were performed with a house viscous CFD solver based on the conservative finite difference method. In the solver, RANS equation are solved coupled with six degrees of freedom (6DOF) solid body motion equations of the submarine in real time. The structured dynamic overlapping grids were used to simulate the real-time changes of the attitude of the submarine and the rotation of the rudder. The volume force method was used to replace the real propeller to realize the self-propelled movement of submarine. In the free running maneuvering simulations, the submarines move at the same initial velocity and rudder angle, restricted to the horizontal plane with four degrees of freedom (4DOF). Comparisons of the trajectory and kinematic parameters including relative turning radius and turning period between the two cases were presented in this paper. The results show that, compared with the cruciform rudder configuration, the X rudder configuration has obvious advantages for submarine in the turning abilities.


2021 ◽  
pp. 1-1
Author(s):  
Zehua Dong ◽  
Fangmin Li ◽  
Ziheng Li ◽  
Kaveh Pahlavan

2011 ◽  
Vol 354-355 ◽  
pp. 1012-1015
Author(s):  
Ya Mei Liu ◽  
Hong Geng Yang ◽  
Lan Fang Li

Interharmoics are the signals whose frequencies are between two harmonics. Besides the usual characterics of the harmonics, interharmonics will influence the present harmonic compensating equipment, and then result in failure compensation. Therefore, precise detection of interharmonics is very important and significant. Complex modulation Zoom-FFT (ZFFT) based on complex analytical bandpass filter is introduced in the real-time detection of the power system. Contrasting to the traditional zoom spectrum algorithms, the proposed algorithm is more suitable in the intensive spectrum analysis. Detailed theoretical analysis and simulation results are presented. The effectiveness of this algorithm is verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chern-Sheng Lin ◽  
Pei-Chi Chen ◽  
Yu-Ching Pan ◽  
Che-Ming Chang ◽  
Kuo-Liang Huang

This study focused on utilizing the Kinect depth sensor to track double-hand gestures and control a real-time robotic arm. The control system is mainly composed of the microprocessor, a color camera, the depth sensor, and the robotic arm. The Kinect depth sensor was used to take photos of the human body to analyze the skeleton of a human body and obtain the relevant information. Such information was used to identify the gestures of the left hand and the left palm of the user. The gesture of left hand was used as an input command device. The gesture of the right hand was used for imitation movement teaching of robotic arm. From the depth sensor, the real-time images of the human body and the deep information of each joint were collected and converted to the relative positions of the robotic arm. Combining forward kinematics and inverse kinematics and D-H link, the gesture information of the right hand was calculated, which was converted via coordinates into each angle of the motor of the robotic arm. From the color camera, when the left palm was not detected, the user could simply use the right hand to control the action and movement of the real-time robotic arm. When the left palm was detected and 5 fingertips were identified, it meant the start of recording the real-time imitation movement of the robotic arm by the right hand. When 0 fingertip was identified, it meant the stoppage of the above recording. When 2 fingertips were identified, the user could not only control the real-time robotic arm but also repeat the recorded actions.


Sign in / Sign up

Export Citation Format

Share Document