Characteristic p methods in characteristic zero via ultraproducts

2010 ◽  
pp. 387-420 ◽  
Author(s):  
Hans Schoutens
2011 ◽  
Vol 18 (01) ◽  
pp. 1-76 ◽  
Author(s):  
Lluis Puig

In [7] we have introduced the Frobenius categories [Formula: see text] over a finite p-group P, and we have associated to [Formula: see text] — suitably endowed with some central k*-extensions — a “Grothendieck group” as an inverse limit of Grothendieck groups of categories of modules in characteristic p obtained from [Formula: see text], determining its rank. Our purpose here is to introduce an analogous inverse limit of Grothendieck groups of categories of modules in characteristic zero obtained from [Formula: see text], determining its rank and proving that its extension to a field is canonically isomorphic to the direct sum of the corresponding extensions of the “Grothendieck groups” above associated with the centralizers in [Formula: see text] of a suitable set of representatives of the [Formula: see text]-classes of elements of P.


2018 ◽  
Vol 2020 (7) ◽  
pp. 1921-1932 ◽  
Author(s):  
Thomas Bitoun

Abstract Let D be the ring of Grothendieck differential operators of the ring R of polynomials in d ≥ 3 variables with coefficients in a perfect field of characteristic p. We compute the D-module length of the 1st local cohomology module ${H^{1}_{f}}(R)$ with respect to a polynomial f with an isolated singularity, for p large enough. The expression we give is in terms of the Frobenius action on the top coherent cohomology of the exceptional fibre of a resolution of the singularity. Our proof rests on a tight closure computation of Hara. Since the above length is quite different from that of the corresponding local cohomology module in characteristic zero, we also consider a characteristic zero D-module whose length is expected to equal that above, for ordinary primes.


2017 ◽  
Vol 17 (5) ◽  
pp. 71-80
Author(s):  
T.V. Skoraya ◽  
Yu.Yu. Frolova

The paper is devoted to two new results concerning varieties of Leibniz algebras. In case of prime characteristic p we construct an example of a non-nilpotent variety of Leibniz algebras with Engel condition. In case of field of characteristic zero we obtain a new result concerning the space of multilinear componentsof the variety of left-nilpotent Leibniz algebra of class three.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


Author(s):  
Jan Stevens

AbstractWe discuss a problem of Arnold, whether every function is stably equivalent to one which is non-degenerate for its Newton diagram. We argue that the answer is negative. We describe a method to make functions non-degenerate after stabilisation and give examples of singularities where this method does not work. We conjecture that they are in fact stably degenerate, that is not stably equivalent to non-degenerate functions.We review the various non-degeneracy concepts in the literature. For finite characteristic, we conjecture that there are no wild vanishing cycles for non-degenerate singularities. This implies that the simplest example of singularities with finite Milnor number, $$x^p+x^q$$ x p + x q in characteristic p, is not stably equivalent to a non-degenerate function. We argue that irreducible plane curves with an arbitrary number of Puiseux pairs (in characteristic zero) are stably non-degenerate. As the stabilisation involves many variables, it becomes very difficult to determine the Newton diagram in general, but the form of the equations indicates that the defining functions are non-degenerate.


Author(s):  
Zihan Kang ◽  
Enzhu Lin ◽  
Ni Qin ◽  
Jiang Wu ◽  
Baowei Yuan ◽  
...  

Piezocatalysis emerged as a novel technique to make use of mechanical energy in dealing with organic pollutants in wastewater. In this work, the ferroelectric Bi2WO6 (BWO) nanosheets with a characteristic...


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2018 ◽  
Vol 61 (1) ◽  
pp. 166-173
Author(s):  
Cleto B. Miranda-Neto

AbstractIn this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.


Sign in / Sign up

Export Citation Format

Share Document