A Module-theoretic Characterization of Algebraic Hypersurfaces

2018 ◽  
Vol 61 (1) ◽  
pp. 166-173
Author(s):  
Cleto B. Miranda-Neto

AbstractIn this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.



Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.



2021 ◽  
Vol 31 (3) ◽  
pp. 033107
Author(s):  
F. R. Iaconis ◽  
A. A. Jiménez Gandica ◽  
J. A. Del Punta ◽  
C. A. Delrieux ◽  
G. Gasaneo


2017 ◽  
Vol 16 (11) ◽  
pp. 1750205
Author(s):  
Özge Öztekin ◽  
Naime Ekici

Let [Formula: see text] be the free nilpotent Lie algebra of finite rank [Formula: see text] [Formula: see text] and nilpotency class [Formula: see text] over a field of characteristic zero. We give a characterization of central automorphisms of [Formula: see text] and we find sufficient conditions for an automorphism of [Formula: see text] to be a central automorphism.



2011 ◽  
Vol 07 (01) ◽  
pp. 173-202
Author(s):  
ROBERT CARLS

In this article, we give a Galois-theoretic characterization of the canonical theta structure. The Galois property of the canonical theta structure translates into certain p-adic theta relations which are satisfied by the canonical theta null point of the canonical lift. As an application, we prove some 2-adic theta identities which describe the set of canonical theta null points of the canonical lifts of ordinary abelian varieties in characteristic 2. The latter theta relations are suitable for explicit canonical lifting. Using the theory of canonical theta null points, we are able to give a theoretical foundation to Mestre's point counting algorithm which is based on the computation of the generalized arithmetic geometric mean sequence.



Sign in / Sign up

Export Citation Format

Share Document