Characterizations of the Solution Sets and Sufficient Optimality Criteria via Higher-Order Strong Convexity

Author(s):  
Pooja Arora ◽  
Guneet Bhatia ◽  
Anjana Gupta
Author(s):  
Timothy Tylaska ◽  
Kazem Kazerounian

Abstract In the synthesis of watt I six bar linkage, for finitely separated design positions, or in higher order design, constraint equations become highly nonlinear and transcendental. This paper presents a method to decouple the synthesis problem to the synthesis of two path generator 4-bar linkages. Based on this decoupled system, an explicit design methodology is developed, enabling a three, four, five or six body guidance position Watt I linkage to be designed while the designer has choice of some body pivots and ground pivots. Numerical procedures for higher number of positions are also discussed. The methodology allows the designer to obtain an entire set of solutions to a particular design problem. As a spin off from this work, a methodology is also presented to obtain complete solution sets of four bar path generators capable of passing through up to seven precision points, with a procedure that can be eventually extended to eight and nine path points. Design considerations such as branching and transmission angles are also considered.


2001 ◽  
Author(s):  
Nidal Al-Masoud ◽  
Tarunraj Singh

Abstract In this paper, a methodology is proposed for determination of optimal actuator and sensor locations for the control of combustion instabilities. The proposed approach relies on certain quantitative measures of degree of controllability and observability based on the controllability and observability grammians. These criteria are arrived at by considering the energies of system’s inputs and outputs. The optimality criteria for sensor and actuator locations provide a balance between the importance of the lower order and the higher order modes. It is assumed that the control input is provided by a finite number of point actuators, and the instantaneous conditions in the chamber are monitored, in general, by multiple sensors.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Author(s):  
Julian M. Etzel ◽  
Gabriel Nagy

Abstract. In the current study, we examined the viability of a multidimensional conception of perceived person-environment (P-E) fit in higher education. We introduce an optimized 12-item measure that distinguishes between four content dimensions of perceived P-E fit: interest-contents (I-C) fit, needs-supplies (N-S) fit, demands-abilities (D-A) fit, and values-culture (V-C) fit. The central aim of our study was to examine whether the relationships between different P-E fit dimensions and educational outcomes can be accounted for by a higher-order factor that captures the shared features of the four fit dimensions. Relying on a large sample of university students in Germany, we found that students distinguish between the proposed fit dimensions. The respective first-order factors shared a substantial proportion of variance and conformed to a higher-order factor model. Using a newly developed factor extension procedure, we found that the relationships between the first-order factors and most outcomes were not fully accounted for by the higher-order factor. Rather, with the exception of V-C fit, all specific P-E fit factors that represent the first-order factors’ unique variance showed reliable and theoretically plausible relationships with different outcomes. These findings support the viability of a multidimensional conceptualization of P-E fit and the validity of our adapted instrument.


Sign in / Sign up

Export Citation Format

Share Document