Predictive Control Approaches for PID Control Design and Its Extension to Multirate System

Author(s):  
Takao Sato
2020 ◽  
Author(s):  
Akif Rahmatillah ◽  
Inten Fauziah Hidayat ◽  
Alfian Pramudita Putra ◽  
Osmalina Nur Rahma ◽  
Suhariningsih

2013 ◽  
Vol 7 (6) ◽  
pp. 1470-1483 ◽  
Author(s):  
Chiara Toffanin ◽  
Mirko Messori ◽  
Federico Di Palma ◽  
Giuseppe De Nicolao ◽  
Claudio Cobelli ◽  
...  

Author(s):  
Amirhossein Salimi ◽  
Amin Ramezanifar ◽  
Javad Mohammadpour ◽  
Karolos M. Grogoriadis

Restricted space inside the magnetic resonance imaging (MRI) scanner bore prevents surgeons to directly interact with the patient during MRI-guided procedures. This motivates the development of a robotic system that can act as an interface during those interventions. In this paper, we present a master-slave robotic system as a solution to the aforedescribed issue. The proposed system consists of a commercial PHANTOM device (product of The Sensable Technologies) as the master robot and an MRI-compatible patient-mounted parallel platform (that we name ROBOCATH) designed to serve as the slave mechanism inside the scanner bore. We present in this paper the design principles for the platform, as well as the PID control design for the system. We use our experimental setup to evaluate the performance of the system by examining the effectiveness of the slave platform in tracking the reference trajectories generated by the master robot.


Author(s):  
Zicheng Cai ◽  
Asad A. Ul Haq ◽  
Michael E. Cholette ◽  
Dragan Djurdjanovic

This paper presents evaluation of the energy consumption and tracking performance associated with the use of a recently introduced dual-mode model predictive controller (DMMPC) for control of a heating, ventilation, and air conditioning (HVAC) system. The study was conducted using detailed simulations of an HVAC system, which included a multizone air loop, a water loop, and a chiller. Energy consumption and tracking performance are computed from the simulations and evaluated in the presence of different types and magnitudes of noise and disturbances. Performance of the DMMPC is compared with a baseline proportional-integral-derivative (PID) control structure commonly used for HVAC system control, and this comparison showed clear and consistent superiority of the DMMPC.


Sign in / Sign up

Export Citation Format

Share Document