scholarly journals Analytical PID control design in time domain with performance‐robustness trade‐off

2018 ◽  
Vol 54 (13) ◽  
pp. 815-817 ◽  
Author(s):  
S. Tavakoli ◽  
M. Safaei
2019 ◽  
Vol 9 (16) ◽  
pp. 3220 ◽  
Author(s):  
Ryo Kurokawa ◽  
Takao Sato ◽  
Ramon Vilanova ◽  
Yasuo Konishi

The present study proposes a novel proportional-integral-derivative (PID) control design method in discrete time. In the proposed method, a PID controller is designed for first-order plus dead-time (FOPDT) systems so that the prescribed robust stability is accomplished. Furthermore, based on the control performance, the relationship between the servo performance and the regulator performance is a trade-off relationship, and hence, these items are not simultaneously optimized. Therefore, the proposed method provides an optimal design method of the PID parameters for optimizing the reference tracking and disturbance rejection performances, respectively. Even though such a trade-off design method is being actively researched for continuous time, few studies have examined such a method for discrete time. In conventional discrete time methods, the robust stability is not directly prescribed or available systems are restricted to systems for which the dead-time in the continuous time model is an integer multiple of the sampling interval. On the other hand, in the proposed method, even when a discrete time zero is included in the controlled plant, the optimal PID parameters are obtained. In the present study, as well as the other plant parameters, a zero in the FOPDT system is newly normalized, and then, a universal design method is obtained for the FOPDT system with the zero. Finally, the effectiveness of the proposed method is demonstrated through numerical examples.


2018 ◽  
Vol 51 (4) ◽  
pp. 244-249 ◽  
Author(s):  
Ryo Kurokawa ◽  
Takao Sato ◽  
Ramon Vilanova ◽  
Yasuo Konishi

2020 ◽  
Author(s):  
Akif Rahmatillah ◽  
Inten Fauziah Hidayat ◽  
Alfian Pramudita Putra ◽  
Osmalina Nur Rahma ◽  
Suhariningsih

Author(s):  
Amirhossein Salimi ◽  
Amin Ramezanifar ◽  
Javad Mohammadpour ◽  
Karolos M. Grogoriadis

Restricted space inside the magnetic resonance imaging (MRI) scanner bore prevents surgeons to directly interact with the patient during MRI-guided procedures. This motivates the development of a robotic system that can act as an interface during those interventions. In this paper, we present a master-slave robotic system as a solution to the aforedescribed issue. The proposed system consists of a commercial PHANTOM device (product of The Sensable Technologies) as the master robot and an MRI-compatible patient-mounted parallel platform (that we name ROBOCATH) designed to serve as the slave mechanism inside the scanner bore. We present in this paper the design principles for the platform, as well as the PID control design for the system. We use our experimental setup to evaluate the performance of the system by examining the effectiveness of the slave platform in tracking the reference trajectories generated by the master robot.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.


Automatica ◽  
2006 ◽  
Vol 42 (11) ◽  
pp. 1849-1861 ◽  
Author(s):  
Sergio Galeani ◽  
Andrew R. Teel

Sign in / Sign up

Export Citation Format

Share Document