Gaussian Curvature and the Gauss Map

Author(s):  
Andrew Pressley
Keyword(s):  
2006 ◽  
Vol 56 (8) ◽  
pp. 1357-1369 ◽  
Author(s):  
Juan A. Aledo ◽  
José M. Espinar ◽  
José A. Gálvez

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 398 ◽  
Author(s):  
Erhan Güler ◽  
Hasan Hacısalihoğlu ◽  
Young Kim

We study and examine the rotational hypersurface and its Gauss map in Euclidean four-space E 4 . We calculate the Gauss map, the mean curvature and the Gaussian curvature of the rotational hypersurface and obtain some results. Then, we introduce the third Laplace–Beltrami operator. Moreover, we calculate the third Laplace–Beltrami operator of the rotational hypersurface in E 4 . We also draw some figures of the rotational hypersurface.


2005 ◽  
Vol 16 (02) ◽  
pp. 173-180 ◽  
Author(s):  
ANTHONY SMALL

We give formulae for minimal surfaces in ℝ3 deriving, via classical osculation duality, from elliptic curves in a line bundle over ℙ1. Specialising to the case of charge 2 monopole spectral curves we find that the distribution of Gaussian curvature on the auxiliary minimal surface reflects the monopole's structure. This is elucidated by the behaviour of the surface's Gauss map.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


Author(s):  
Wojciech Szumiński ◽  
Andrzej J. Maciejewski

AbstractIn the paper [1], the author formulates in Theorem 2 necessary conditions for integrability of a certain class of Hamiltonian systems with non-constant Gaussian curvature, which depends on local coordinates. We give a counterexample to show that this theorem is not correct in general. This contradiction is explained in some extent. However, the main result of this note is our theorem that gives new simple and easy to check necessary conditions to integrability of the system considered in [1]. We present several examples, which show that the obtained conditions are effective. Moreover, we justify that our criterion can be extended to wider class of systems, which are given by non-meromorphic Hamiltonian functions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph Malkoun ◽  
Peter J. Olver

Abstract Given n distinct points $\mathbf {x}_1, \ldots , \mathbf {x}_n$ in $\mathbb {R}^d$ , let K denote their convex hull, which we assume to be d-dimensional, and $B = \partial K $ its $(d-1)$ -dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps $\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for $\varepsilon> 0$ , are defined on the $(d-1)$ -dimensional sphere, and whose images $\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension $1$ submanifolds contained in the interior of K. Moreover, as the parameter $\varepsilon $ goes to $0^+$ , the images $\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.


Sign in / Sign up

Export Citation Format

Share Document