Adoption of Genetic Algorithm for Cross-Docking Scheduling with Time Window

Author(s):  
Lixing Yeung ◽  
CKM Lee
2021 ◽  
Vol 2083 (3) ◽  
pp. 032013
Author(s):  
Shaokun Liu

Abstract In this paper, SF express company Jinzhou Guta District Pinganli business point as an example, to investigate its distribution, statistical analysis of the survey results, summed up the problems in logistics and distribution. Through the systematic study of the problem, a planning model with time window and with the objective of minimizing the total cost of distribution is established. At the same time, an intelligent algorithm for distribution path optimization - Genetic Algorithm (GA) is designed. Genetic algorithm is used to design chromosome coding methods and genetic operators for solving the planning model with the objective of minimizing the total cost of distribution. Finally, the simulation experiment is carried out. MATLAB software is used to solve the distribution route and the total driving distance of vehicles, and the distribution route with the goal of minimizing the total distribution cost is obtained.


2017 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Lahcene Guezouli ◽  
Samir Abdelhamid

One of the most important combinatorial optimization problems is the transport problem, which has been associated with many variants such as the HVRP and dynamic problem. The authors propose in this study a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that the authors call the Multi-Depot HVRPTW by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and the authors solve this problem by proposing a new scheme based on a genetic algorithm heuristics that they will specify later. Computational experiments with the benchmark test instances confirm that their approach produces acceptable quality solutions compared with previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that the method of genetic algorithm heuristics is effective in solving the MDHVRPTW problem and hence has a great potential.


2014 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Bo Xing

Cross docking is a practice in logistics with the main operations of goods flow directly from receiving to the shipping docks without stopping or being put away into storage. It is a simple concept to talk about, but a challenging one to implement. So far, many different approaches have been followed in order to improve the efficiency of a cross docking system. However, as the complexity increases, the use of computational intelligence (CI) in those problems is becoming a unique tool of imperative value. In this paper, different CI methods, such as Tabu search, simulated annealing, genetic algorithm, and fuzzy logic. The key issues in implementing the proposed approaches are discussed, and finally the open questions are highlighted.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Hua-wei Ma ◽  
Lei Tao ◽  
Xiao-xuan Hu

In swap trailer transportation routing problems, trucks and trailers conduct swap operations at special positions called trailer points. The parallelization of stevedoring and transportation can be achieved by means of these trailer points. This logistics organization mode can be more effective than the others. In this paper, an integer programming model with capacity and time-window constraints was established. A repairing strategy is embedded in the genetic algorithm (GA) to solve the model. The repairing strategy is executed after the crossover and mutation operation to eliminate the illegal routes. Furthermore, a parameter self-adaptive adjustment policy is designed to improve the convergence. Then numerical experiments are implemented based on the generated datasets; the performance and robustness of the algorithm parameter self-adaptive adjustment policy are discussed. Finally, the results show that the improved algorithm performs better than elementary GA.


2021 ◽  
Vol 11 (19) ◽  
pp. 8940
Author(s):  
Wonseok Choi ◽  
Wonseok Yang ◽  
Jaeyoung Na ◽  
Giuk Lee ◽  
Woochul Nam

For gait phase estimation, time-series data of lower-limb motion can be segmented according to time windows. Time-domain features can then be calculated from the signal enclosed in a time window. A set of time-domain features is used for gait phase estimation. In this approach, the components of the feature set and the length of the time window are influential parameters for gait phase estimation. However, optimal parameter values, which determine a feature set and its values, can vary across subjects. Previously, these parameters were determined empirically, which led to a degraded estimation performance. To address this problem, this paper proposes a new feature extraction approach. Specifically, the components of the feature set are selected using a binary genetic algorithm, and the length of the time window is determined through Bayesian optimization. In this approach, the two optimization techniques are integrated to conduct a dual optimization task. The proposed method is validated using data from five walking and five running motions. For walking, the proposed approach reduced the gait phase estimation error from 1.284% to 0.910%, while for running, the error decreased from 1.997% to 1.484%.


Sign in / Sign up

Export Citation Format

Share Document