A Hierarchical Fuzzy TOPSIS Approach for the Risk Assessment of Green Supply Chain Implementation

Author(s):  
Hing Kai Chan ◽  
Xiaojun Wang
2018 ◽  
Vol 25 (8) ◽  
pp. 2660-2687 ◽  
Author(s):  
Sachin Kumar Mangla ◽  
Sunil Luthra ◽  
Suresh Jakhar

PurposeThe purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use the fuzzy failure mode and effects analysis (FMEA) approach for assessing the risks associated with GSC for benchmarking the performance in terms of effective GSC management adoption and sustainable production.Design/methodology/approachInitially, different failure modes are defined using FMEA analysis, and in order to decide the risk priority, the risk priority number (RPN) is determined. Such priority numbers are typically acquired from the judgment decisions of experts that could contain the element of vagueness and imperfection due to human biases, and it may lead to inaccuracy in the process of risk assessment in GSC. In this study, fuzzy logic is applied to conventional FMEA to overcome the issues in assigning RPNs. A plastic manufacturer GSC case exemplar of the proposed model is illustrated to present the authenticity of this method of risk assessment.FindingsResults indicate that the failure modes, given as improper green operating procedure, i.e. process, operations, etc. (R6), and green issues while closing the loop of GSC (R14) hold the highest RPN and FRPN scores in classical as well as fuzzy FMEA analysis.Originality/valueThe present research work attempts to propose an evaluation framework for risk assessment in GSC. This paper explores both sustainable developments and risks related to efficient management of GSC initiatives in a plastic industry supply chain context. From a managerial perspective, suggestions are also provided with respect to each failure mode.


2021 ◽  
Vol 13 (22) ◽  
pp. 12743
Author(s):  
Muhammad Hamza Naseem ◽  
Jiaqi Yang ◽  
Ziquan Xiang

In the past few years, reverse logistics practices have successfully managed to gain more attention in various industries and among supply chain researchers and experts. This is due to globalization, environmental concerns, and customer requirements, which have asserted industries’ concerns for reverse logistics management. In E-commerce, the process of reverse logistics originates with parcel refusal, undelivered goods, and exchanges. In developing countries like Pakistan, the adoption and implications of reverse logistics are still at their early stages. E-commerce companies give more attention to forward logistics and ignore logistics’ upstream flow in the supply chain. This study aims to identify, as well as list, the barriers and obtain the solutions to those identified barriers, and rank the barriers and their solutions so that logisticians and experts can solve them as per their priority. From the extensive literature review and experts’ opinions, we have found 14 barriers in implementing effective reverse logistics. Eight solutions to those barriers were also found from the literature review. This paper proposed the methodology based on fuzzy analytical hierarchy process (fuzzy-AHP), which used to get the weights of each barrier by using pairwise comparison, and fuzzy technique for order performance by similarity to ideal solution (fuzzy-TOPSIS) method, which was adopted for the final ranking of solutions to reverse logistics. The case of the Pakistan E-commerce industry is used in the proposed method.


Author(s):  
Behzad Aslani Avilaq ◽  
Behnam Malmir ◽  
Farzad Firouzi Jahantigh

2020 ◽  
Vol 38 (6) ◽  
pp. 6991-6999
Author(s):  
Xue Ge ◽  
Jiaqi Yang ◽  
Haiyan Wang ◽  
Wanqing Shao

Sign in / Sign up

Export Citation Format

Share Document