Singular Kernels

Author(s):  
Christian Constanda
Keyword(s):  
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2023
Author(s):  
Christopher Nicholas Angstmann ◽  
Byron Alexander Jacobs ◽  
Bruce Ian Henry ◽  
Zhuang Xu

There has been considerable recent interest in certain integral transform operators with non-singular kernels and their ability to be considered as fractional derivatives. Two such operators are the Caputo–Fabrizio operator and the Atangana–Baleanu operator. Here we present solutions to simple initial value problems involving these two operators and show that, apart from some special cases, the solutions have an intrinsic discontinuity at the origin. The intrinsic nature of the discontinuity in the solution raises concerns about using such operators in modelling. Solutions to initial value problems involving the traditional Caputo operator, which has a singularity inits kernel, do not have these intrinsic discontinuities.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


Author(s):  
M. V. Balaban ◽  
E. I. Smotrova ◽  
O. V. Shapoval ◽  
V. S. Bulygin ◽  
A. I. Nosich

2021 ◽  
Vol 5 (3) ◽  
pp. 70
Author(s):  
Esmail Bargamadi ◽  
Leila Torkzadeh ◽  
Kazem Nouri ◽  
Amin Jajarmi

In this paper, by means of the second Chebyshev wavelet and its operational matrix, we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels. We estimate the functions by using the wavelet basis and then obtain the approximate solutions from the algebraic system corresponding to the main system. Moreover, the implementation of our scheme is presented, and the error bounds of approximations are analyzed. Finally, we evaluate the efficiency of the method through a numerical example.


Sign in / Sign up

Export Citation Format

Share Document