The Modulation of Drug Efficacy and Toxicity by the Gut Microbiome

Author(s):  
Ian D. Wilson ◽  
Jeremy K. Nicholson
Keyword(s):  
2020 ◽  
Vol 176 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Vicki L Sutherland ◽  
Charlene A McQueen ◽  
Donna Mendrick ◽  
Donna Gulezian ◽  
Carl Cerniglia ◽  
...  

Abstract There is an increasing awareness that the gut microbiome plays a critical role in human health and disease, but mechanistic insights are often lacking. In June 2018, the Health and Environmental Sciences Institute (HESI) held a workshop, “The Gut Microbiome: Markers of Human Health, Drug Efficacy and Xenobiotic Toxicity” (https://hesiglobal.org/event/the-gut-microbiome-workshop) to identify data gaps in determining how gut microbiome alterations may affect human health. Speakers and stakeholders from academia, government, and industry addressed multiple topics including the current science on the gut microbiome, endogenous and exogenous metabolites, biomarkers, and model systems. The workshop presentations and breakout group discussions formed the basis for identifying data gaps and research needs. Two critical issues that emerged were defining the microbial composition and function related to health and developing standards for models, methods and analysis in order to increase the ability to compare and replicate studies. A series of key recommendations were formulated to focus efforts to further understand host-microbiome interactions and the consequences of exposure to xenobiotics as well as identifying biomarkers of microbiome-associated disease and toxicity.


Author(s):  
Eilidh Bruce ◽  
Stanislau Makaranka ◽  
Gordon Urquhart ◽  
Beatrix Elsberger

The gut microbiome is a novel player in the pathogenesis and treatment of breast cancer. The term “microbiome” is used to describe the diverse community of micro-organisms existing within the gastrointestinal tract. The gut microbiome plays an important role in oestrogen metabolism through its ability to deconjugate oestrogens within the gut resulting in their reabsorption. Therefore, it is not unsurprising that “dysbiosis”, the disruption of normal gut microbiota composition, is now thought to play a role in the development of the disease, as women with breast cancer have been shown to have altered gut microbiota and this has been correlated with tumour characteristics. There is emerging evidence to suggest that the gut microbiota may also impact on breast cancer treatment, by mediating both drug efficacy and toxicity. The present review will discuss the influence of the gut microbiota on systemic treatments for breast cancer, including chemotherapy, anti-HER2 therapy, endocrine therapy and immunotherapy as well as other targeted treatments.


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


2017 ◽  
Vol 12 (S 01) ◽  
pp. S1-S84
Author(s):  
D Fangmann ◽  
EM Theismann ◽  
K Türk ◽  
DM Schulte ◽  
I Relling ◽  
...  

2019 ◽  
Author(s):  
M Krainer ◽  
J Sommer ◽  
D Silbert-Wagner ◽  
S Racedo ◽  
K Panzitt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document