Special Classes of Bounded Operators

2003 ◽  
pp. 293-312
Author(s):  
Philippe Blanchard ◽  
Erwin Brüning
Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Vladimir Vasilyev

We suggest a certain variant of symbolic calculus for special classes of linear bounded operators acting in Banach spaces. According to the calculus we formulate an index theorem and give applications to elliptic pseudo-differential operators on smooth manifolds with non-smooth boundaries.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Maximiliano Contino ◽  
Michael A. Dritschel ◽  
Alejandra Maestripieri ◽  
Stefania Marcantognini

AbstractOn finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class $${\mathcal {L}^{+\,2}}$$ L + 2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in $${\mathcal {L}^{+\,2}}$$ L + 2 are developed, and membership in $${\mathcal {L}^{+\,2}}$$ L + 2 among special classes, including algebraic and compact operators, is examined.


BDJ ◽  
1971 ◽  
Vol 131 (9) ◽  
pp. 417-418
Author(s):  
G Turner

2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


Sign in / Sign up

Export Citation Format

Share Document