scholarly journals Products of Positive Operators

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Maximiliano Contino ◽  
Michael A. Dritschel ◽  
Alejandra Maestripieri ◽  
Stefania Marcantognini

AbstractOn finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class $${\mathcal {L}^{+\,2}}$$ L + 2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in $${\mathcal {L}^{+\,2}}$$ L + 2 are developed, and membership in $${\mathcal {L}^{+\,2}}$$ L + 2 among special classes, including algebraic and compact operators, is examined.

2007 ◽  
Vol 14 (04) ◽  
pp. 355-370 ◽  
Author(s):  
Janusz Grabowski ◽  
Marek Kuś ◽  
Giuseppe Marmo

Relations between states and maps, which are known for quantum systems in finite-dimensional Hilbert spaces, are formulated rigorously in geometrical terms with no use of coordinate (matrix) interpretation. In a tensor product realization they are represented simply by a permutation of factors. This leads to natural generalizations for infinite-dimensional Hilbert spaces and a simple proof of a generalized Choi Theorem. The natural framework is based on spaces of Hilbert-Schmidt operators [Formula: see text] and the corresponding tensor products [Formula: see text] of Hilbert spaces. It is proved that the corresponding isomorphisms cannot be naturally extended to compact (or bounded) operators, nor reduced to the trace-class operators. On the other hand, it is proven that there is a natural continuous map [Formula: see text] from trace-class operators on [Formula: see text] (with the nuclear norm) into compact operators mapping the space of all bounded operators on [Formula: see text] into trace class operators on [Formula: see text] (with the operator-norm). Also in the infinite-dimensional context, the Schmidt measure of entanglement and multipartite generalizations of state-maps relations are considered in the paper.


2003 ◽  
Vol 3 (4) ◽  
pp. 281-306
Author(s):  
M. Keyl ◽  
D. Schlingemann ◽  
R.F. Werner

For states in infinite dimensional Hilbert spaces entanglement quantities like the entanglement of distillation can become infinite. This leads naturally to the question, whether one system in such an infinitely entangled state can serve as a resource for tasks like the teleportation of arbitrarily many qubits. We show that appropriate states cannot be obtained by density operators in an infinite dimensional Hilbert space. However, using techniques for the description of infinitely many degrees of freedom from field theory and statistical mechanics, such states can nevertheless be constructed rigorously. We explore two related possibilities, namely an extended notion of algebras of observables, and the use of singular states on the algebra of bounded operators. As applications we construct the essentially unique infinite analogue of maximally entangled states, and the singular state used heuristically in the fundamental paper of Einstein, Rosen and Podolsky.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Asao Arai

Spectral properties of a special class of infinite dimensional Dirac operatorsQ(α)on the abstract boson-fermion Fock spaceℱ(ℋ,𝒦)associated with the pair(ℋ,𝒦)of complex Hilbert spaces are investigated, whereα∈Cis a perturbation parameter (a coupling constant in the context of physics) and the unperturbed operatorQ(0)is taken to be a free infinite dimensional Dirac operator. A variety of the kernel ofQ(α)is shown. It is proved that there are cases where, for all sufficiently large|α|withα<0,Q(α)has infinitely many nonzero eigenvalues even ifQ(0)has no nonzero eigenvalues. Also Fredholm property ofQ(α)restricted to a subspace ofℱ(ℋ,𝒦)is discussed.


1984 ◽  
Vol 39 (2) ◽  
pp. 113-131
Author(s):  
Fritz Bopp

The question is often asked how to interprete quantum physics. That question does not arise in classical physics, since Newton's axioms are immediately connected with basic ideas and experiences. The same is possible in quantum physics, if we remember how elementary particle physicists describe their experiments. As Helmholtz has pointed out. the basic assumption of classical physics is that of geneidentity. That means: Bodies remain the same during their motion. Obviously, that is no longer true in quantum physics. Particles can be created and annihilated. Therefore creation and annihilation must be considered as basic processes. Motion only occurs, if a particle is annihilated in a certain point, if an equal one is created in an infinitesimally neighbouring point, and if this process is continuously going on during a certain time. Motions of that kind are compatible with the existence of some manifest creation and annihilation processes. If we accept this idea, quantum physics can be derived from first principles. As in classical physics, we know therefore what happens from the very beginning. Thus questions of interpretation become dispensable. A particular mathematical method is used to exhaust continua. The theory is formulated in a finite lattice, whose point density and extension equally go to infinity. All calculations are therefore performed in a finite dimensional Hilbert space. The results are however related to an infinite dimensional one. Earlier calculations may, therefore, be essentially correct, though they must be rejected in theories which are based on manifestly infinite dimensional Hilbert spaces. Here limiting processes do not occur in the state space. They are only admissible for numerical results.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Robin Cockett ◽  
Cole Comfort ◽  
Priyaa Srinivasan

Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.


2004 ◽  
Vol 47 (2) ◽  
pp. 298-313 ◽  
Author(s):  
Bamdad R. Yahaghi

AbstractIn this paper we consider collections of compact operators on a real or complex Banach space including linear operators on finite-dimensional vector spaces. We show that such a collection is simultaneously triangularizable if and only if it is arbitrarily close to a simultaneously triangularizable collection of compact operators. As an application of these results we obtain an invariant subspace theorem for certain bounded operators. We further prove that in finite dimensions near reducibility implies reducibility whenever the ground field is or .


1978 ◽  
Vol 21 (2) ◽  
pp. 143-147
Author(s):  
S. J. Cho

Let be a separable complex infinite dimensional Hilbert space, the algebra of bounded operators in the ideal of compact operators, and the quotient map. Throughout this paper A denotes a separable nuclear C*-algebra with unit. An extension of A is a unital *-monomorphism of A into . Two extensions τ1 and τ2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in such thatfor all a in A.


2005 ◽  
Vol 77 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Paolo Piccione ◽  
Daniel V. Tausk

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.


1969 ◽  
Vol 21 ◽  
pp. 84-95 ◽  
Author(s):  
Bruce Alan Barnes

In (1), Atkinson characterized the set of Fredholm operators on a Banach space X as those bounded operators invertible modulo the two-sided ideal of compact operators on X. It follows from this characterization that the Fredholm operators can also be described as those bounded operators which are invertible modulo the two-sided ideal of bounded operators on X which have finite-dimensional range. This ideal is the socle of the algebra of all bounded operators on X. Now, if A is any ring with no nilpotent left or right ideals, then the concept of socle makes sense (the socle of A in this case is the algebraic sum of the minimal left ideals of A, or 0 if A has no minimal left ideals). Also, in this case, the socle is a two-sided ideal of A. In this paper we study the elements in a ring A which are invertible modulo the socle. We call these elements the Fredholm elements of A.


Author(s):  
Anders C. Hansen

We present a new method for computing spectra and pseudospectra of bounded operators on separable Hilbert spaces. The core in this theory is a generalization of the pseudospectrum called the n -pseudospectrum.


Sign in / Sign up

Export Citation Format

Share Document