Integral Equation for Two-Body Relative Motion: Scattering Green’s Functions in Coordinate Representation

Author(s):  
K. T. Hecht
Geophysics ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Gerald W. Hohmann

The induced polarization (IP) and electromagnetic (EM) responses of a three‐dimensional body in the earth can be calculated using an integral equation solution. The problem is formulated by replacing the body by a volume of polarization or scattering current. The integral equation is reduced to a matrix equation, which is solved numerically for the electric field in the body. Then the electric and magnetic fields outside the inhomogeneity can be found by integrating the appropriate dyadic Green’s functions over the scattering current. Because half‐space Green’s functions are used, it is only necessary to solve for scattering currents in the body—not throughout the earth. Numerical results for a number of practical cases show, for example, that for moderate conductivity contrasts the dipole‐dipole IP response of a body five units in strike length approximates that of a two‐dimensional body. Moving an IP line off the center of a body produces an effect similar to that of increasing the depth. IP response varies significantly with conductivity contrast; the peak response occurs at higher contrasts for two‐dimensional bodies than for bodies of limited length. Very conductive bodies can produce negative IP response due to EM induction. An electrically polarizable body produces a small magnetic field, so that it is possible to measure IP with a sensitive magnetometer. Calculations show that horizontal loop EM response is enhanced when the background resistivity in the earth is reduced, thus confirming scale model results.


A general mathematical formulation to analyse cracks in layered transversely isotropic media is developed in this paper. By constructing the Green’s functions, an integral equation is obtained to determine crack opening displacements when an applied crack face traction is specified. For the infinite body, the Green’s functions have solutions in a closed form. For layered media, a flexibility matrix in the integral transformed domain is formed that establishes the relation between the traction and the displacement for a single layer; the global matrix is formed by assembling all of the flexibility matrices constructed for each layer. The Green’s functions in the spatial domain are obtained by inversion of the Hankel transform. Finally, the crack opening displacement and the crack-tip opening displacement for a vertical planar crack in a layered transversely isotropic medium are obtained numerically by the boundary integral equation method.


Sign in / Sign up

Export Citation Format

Share Document