Roundoff Error and Double Precision

Author(s):  
William R. Fuller
2018 ◽  
Author(s):  
Pavel Pokhilko ◽  
Evgeny Epifanovsky ◽  
Anna I. Krylov

Using single precision floating point representation reduces the size of data and computation time by a factor of two relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially reduce the accuracy of computed observables. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by clean-up iterations, fully recovering double-precision results while retaining significant savings.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 178
Author(s):  
Sebastian Plamowski ◽  
Richard W Kephart

The paper addresses issues associated with implementing GPC controllers in systems with multiple input signals. Depending on the method of identification, the resulting models may be of a high order and when applied to a control/regulation law, may result in numerical errors due to the limitations of representing values in double-precision floating point numbers. This phenomenon is to be avoided, because even if the model is correct, the resulting numerical errors will lead to poor control performance. An effective way to identify, and at the same time eliminate, this unfavorable feature is to reduce the model order. A method of model order reduction is presented in this paper that effectively mitigates these issues. In this paper, the Generalized Predictive Control (GPC) algorithm is presented, followed by a discussion of the conditions that result in high order models. Examples are included where the discussed problem is demonstrated along with the subsequent results after the reduction. The obtained results and formulated conclusions are valuable for industry practitioners who implement a predictive control in industry.


2021 ◽  
Vol 40 (2) ◽  
pp. 59-64
Author(s):  
Jan Verschelde

Hardware double precision is often insufficient to solve large scientific problems accurately. Computing in higher precision defined by software causes significant computational overhead. The application of parallel algorithms compensates for this overhead. Newton's method to develop power series expansions of algebraic space curves is the use case for this application.


2021 ◽  
pp. 1-19
Author(s):  
Habib Ghanbarpourasl

Abstract This paper introduces a power series based method for attitude reconstruction from triad orthogonal strap-down gyros. The method is implemented and validated using quaternions and direction cosine matrix in single and double precision implementation forms. It is supposed that data from gyros are sampled with high frequency and a fitted polynomial is used for an analytical description of the angular velocity vector. The method is compared with the well-known Taylor series approach, and the stability of the coefficients’ norm in higher-order terms for both methods is analysed. It is shown that the norm of quaternions’ derivatives in the Taylor series is bigger than the equivalent terms coefficients in the power series. In the proposed method, more terms can be used in the power series before the saturation of the coefficients and the error of the proposed method is less than that for other methods. The numerical results show that the application of the proposed method with quaternions performs better than other methods. The method is robust with respect to the noise of the sensors and has a low computational load compared with other methods.


Sign in / Sign up

Export Citation Format

Share Document